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Abstract 
 
 
 
A biometric system provides automatic identification of an individual based on a 
unique feature or characteristic possessed by the individual. Iris recognition is 
regarded as the most reliable and accurate biometric identification system available. 
Most commercial iris recognition systems use patented algorithms developed by 
Daugman, and these algorithms are able to produce perfect recognition rates. 
However, published results have usually been produced under favourable conditions, 
and there have been no independent trials of the technology. 
 
The work presented in this thesis involved developing an ‘open-source’ iris 
recognition system in order to verify both the uniqueness of the human iris and also 
its performance as a biometric. For determining the recognition performance of the 
system two databases of digitised greyscale eye images were used. 
 
The iris recognition system consists of an automatic segmentation system that is based 
on the Hough transform, and is able to localise the circular iris and pupil region, 
occluding eyelids and eyelashes, and reflections. The extracted iris region was then 
normalised into a rectangular block with constant dimensions to account for imaging 
inconsistencies. Finally, the phase data from 1D Log-Gabor filters was extracted and 
quantised to four levels to encode the unique pattern of the iris into a bit-wise 
biometric template. 
 
The Hamming distance was employed for classification of iris templates, and two 
templates were found to match if a test of statistical independence was failed. The 
system performed with perfect recognition on a set of 75 eye images; however, tests 
on another set of 624 images resulted in false accept and false reject rates of 0.005% 
and 0.238% respectively. Therefore, iris recognition is shown to be a reliable and 
accurate biometric technology. 
 
 
 
 
 
 
 
 
 
 
 
Keywords: iris recognition, biometric identification, pattern recognition, automatic 
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Chapter 1  
 
Introduction 
 
 

1.1 Biometric Technology 
 
A biometric system provides automatic recognition of an individual based on some 
sort of unique feature or characteristic possessed by the individual. Biometric systems 
have been developed based on fingerprints, facial features, voice, hand geometry, 
handwriting, the retina [1], and the one presented in this thesis, the iris. 
 
Biometric systems work by first capturing a sample of the feature, such as recording a 
digital sound signal for voice recognition, or taking a digital colour image for face 
recognition. The sample is then transformed using some sort of mathematical function 
into a biometric template. The biometric template will provide a normalised, efficient 
and highly discriminating representation of the feature, which can then be objectively 
compared with other templates in order to determine identity. Most biometric systems 
allow two modes of operation. An enrolment mode for adding templates to a database, 
and an identification mode, where a template is created for an individual and then a 
match is searched for in the database of pre-enrolled templates. 
 
A good biometric is characterised by use of a feature that is; highly unique – so that 
the chance of any two people having the same characteristic will be minimal, stable – 
so that the feature does not change over time, and be easily captured – in order to 
provide convenience to the user, and prevent misrepresentation of the feature. 
 

1.2 The Human Iris 
 
The iris is a thin circular diaphragm, which lies between the cornea and the lens of the 
human eye. A front-on view of the iris is shown in Figure 1.1. The iris is perforated 
close to its centre by a circular aperture known as the pupil. The function of the iris is 
to control the amount of light entering through the pupil, and this is done by the 
sphincter and the dilator muscles, which adjust the size of the pupil. The average 
diameter of the iris is 12 mm, and the pupil size can vary from 10% to 80% of the iris 
diameter [2]. 
 
The iris consists of a number of layers, the lowest is the epithelium layer, which 
contains dense pigmentation cells. The stromal layer lies above the epithelium layer, 
and contains blood vessels, pigment cells and the two iris muscles. The density of 
stromal pigmentation determines the colour of the iris. The externally visible surface 
of the multi-layered iris contains two zones, which often differ in colour [3]. An outer 
ciliary zone and an inner pupillary zone, and these two zones are divided by the 
collarette – which appears as a zigzag pattern.  
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Figure 1.1 – A front-on view of the human eye. 

 
Formation of the iris begins during the third month of embryonic life [3]. The unique 
pattern on the surface of the iris is formed during the first year of life, and 
pigmentation of the stroma takes place for the first few years. Formation of the unique 
patterns of the iris is random and not related to any genetic factors [4]. The only 
characteristic that is dependent on genetics is the pigmentation of the iris, which 
determines its colour. Due to the epigenetic nature of iris patterns, the two eyes of an 
individual contain completely independent iris patterns, and identical twins possess 
uncorrelated iris patterns. For further details on the anatomy of the human eye consult 
the book by Wolff [3]. 
 

1.3 Iris Recognition 
 
The iris is an externally visible, yet protected organ whose unique epigenetic pattern 
remains stable throughout adult life. These characteristics make it very attractive for 
use as a biometric for identifying individuals. Image processing techniques can be 
employed to extract the unique iris pattern from a digitised image of the eye, and 
encode it into a biometric template, which can be stored in a database. This biometric 
template contains an objective mathematical representation of the unique information 
stored in the iris, and allows comparisons to be made between templates. When a 
subject wishes to be identified by an iris recognition system, their eye is first 
photographed, and then a template created for their iris region. This template is then 
compared with the other templates stored in a database until either a matching 
template is found and the subject is identified, or no match is found and the subject 
remains unidentified. 
 
Although prototype systems had been proposed earlier, it was not until the early 
nineties that Cambridge researcher, John Daugman, implemented a working 
automated iris recognition system [1][2]. The Daugman system is patented [5] and the 
rights are now owned by the company Iridian Technologies. Even though the 
Daugman system is the most successful and most well known, many other systems 
have been developed. The most notable include the systems of Wildes et al. [7][4], 
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Boles and Boashash [8], Lim et al. [9], and Noh et al. [10]. The algorithms by Lim et 
al. are used in the iris recognition system developed by the Evermedia and Senex 
companies. Also, the Noh et al. algorithm is used in the ‘IRIS2000’ system, sold by 
IriTech. These are, apart from the Daugman system, the only other known 
commercial implementations. 
 
The Daugman system has been tested under numerous studies, all reporting a zero 
failure rate. The Daugman system is claimed to be able to perfectly identify an 
individual, given millions of possibilities. The prototype system by Wildes et al. also 
reports flawless performance with 520 iris images [7], and the Lim et al. system 
attains a recognition rate of 98.4% with a database of around 6,000 eye images. 
 
Compared with other biometric technologies, such as face, speech and finger 
recognition, iris recognition can easily be considered as the most reliable form of 
biometric technology [1]. However, there have been no independent trials of the 
technology, and source code for systems is not available. Also, there is a lack of 
publicly available datasets for testing and research, and the test results published have 
usually been produced using carefully imaged irises under favourable conditions. 
 

1.4 Objective 
 
The objective will be to implement an open-source iris recognition system in order to 
verify the claimed performance of the technology. The development tool used will be 
MATLAB®, and emphasis will be only on the software for performing recognition, 
and not hardware for capturing an eye image. A rapid application development (RAD) 
approach will be employed in order to produce results quickly. MATLAB® provides 
an excellent RAD environment, with its image processing toolbox, and high level 
programming methodology. To test the system, two data sets of eye images will be 
used as inputs; a database of 756 greyscale eye images courtesy of The Chinese 
Academy of Sciences – Institute of Automation (CASIA) [13], and a database of 120 
digital greyscale images courtesy of the Lion’s Eye Institute (LEI) [14]. 
 
The system is to be composed of a number of sub-systems, which correspond to each 
stage of iris recognition. These stages are segmentation – locating the iris region in an 
eye image, normalisation – creating a dimensionally consistent representation of the 
iris region, and feature encoding – creating a template containing only the most 
discriminating features of the iris. The input to the system will be an eye image, and 
the output will be an iris template, which will provide a mathematical representation 
of the iris region. For an overview of the components of the system see Appendix B. 
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Chapter 2  
 
Segmentation 
 
 

2.1 Overview 
 
The first stage of iris recognition is to isolate the actual iris region in a digital eye 
image. The iris region, shown in Figure 1.1, can be approximated by two circles, one 
for the iris/sclera boundary and another, interior to the first, for the iris/pupil 
boundary. The eyelids and eyelashes normally occlude the upper and lower parts of 
the iris region. Also, specular reflections can occur within the iris region corrupting 
the iris pattern. A technique is required to isolate and exclude these artefacts as well 
as locating the circular iris region. 
 
The success of segmentation depends on the imaging quality of eye images. Images in 
the CASIA iris database [13] do not contain specular reflections due to the use of near 
infra-red light for illumination. However, the images in the LEI database [14] contain 
these specular reflections, which are caused by imaging under natural light. Also, 
persons with darkly pigmented irises will present very low contrast between the pupil 
and iris region if imaged under natural light, making segmentation more difficult. The 
segmentation stage is critical to the success of an iris recognition system, since data 
that is falsely represented as iris pattern data will corrupt the biometric templates 
generated, resulting in poor recognition rates. 
 

2.2 Literature Review 

2.2.1 Hough Transform 
 
The Hough transform is a standard computer vision algorithm that can be used to 
determine the parameters of simple geometric objects, such as lines and circles, 
present in an image. The circular Hough transform can be employed to deduce the 
radius and centre coordinates of the pupil and iris regions. An automatic segmentation 
algorithm based on the circular Hough transform is employed by Wildes et al. [7], 
Kong and Zhang [15], Tisse et al. [12], and Ma et al. [16]. Firstly, an edge map is 
generated by calculating the first derivatives of intensity values in an eye image and 
then thresholding the result. From the edge map, votes are cast in Hough space for the 
parameters of circles passing through each edge point. These parameters are the 
centre coordinates xc and yc, and the radius r, which are able to define any circle 
according to the equation 
 

0222 =−+ ryx cc   (2.1) 
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A maximum point in the Hough space will correspond to the radius and centre 
coordinates of the circle best defined by the edge points. Wildes et al. and Kong and 
Zhang also make use of the parabolic Hough transform to detect the eyelids, 
approximating the upper and lower eyelids with parabolic arcs, which are represented 
as; 
 

)sin)(cos)(()cos)(sin)(( 2
jjjjjjjjj kyhxakyhx θθθθ −+−=−+−−  (2.2) 

 
where  controls the curvature,  is the peak of the parabola and ja ),( jj kh jθ  is the 
angle of rotation relative to the x-axis. 
 
In performing the preceding edge detection step, Wildes et al. bias the derivatives in 
the horizontal direction for detecting the eyelids, and in the vertical direction for 
detecting the outer circular boundary of the iris, this is illustrated in Figure 2.1. The 
motivation for this is that the eyelids are usually horizontally aligned, and also the 
eyelid edge map will corrupt the circular iris boundary edge map if using all gradient 
data. Taking only the vertical gradients for locating the iris boundary will reduce 
influence of the eyelids when performing circular Hough transform, and not all of the 
edge pixels defining the circle are required for successful localisation. Not only does 
this make circle localisation more accurate, it also makes it more efficient, since there 
are less edge points to cast votes in the Hough space. 
 

 
a                            b                                  c                                d 

Figure 2.1– a) an eye image (020_2_1 from the CASIA database) b) corresponding edge map c) edge 
map with only horizontal gradients d) edge map with only vertical gradients.  

 
There are a number of problems with the Hough transform method. First of all, it 
requires threshold values to be chosen for edge detection, and this may result in 
critical edge points being removed, resulting in failure to detect circles/arcs. Secondly, 
the Hough transform is computationally intensive due to its ‘brute-force’ approach, 
and thus may not be suitable for real time applications. 

2.2.2 Daugman’s Integro-differential Operator 
 
Daugman makes use of an integro-differential operator for locating the circular iris 
and pupil regions, and also the arcs of the upper and lower eyelids. The integro-
differential operator is defined as 
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where I(x,y) is the eye image, r is the radius to search for, Gσ(r) is a Gaussian 
smoothing function, and s is the contour of the circle given by r, x0, y0. The operator 
searches for the circular path where there is maximum change in pixel values, by 
varying the radius and centre x and y position of the circular contour. The operator is 
applied iteratively with the amount of smoothing progressively reduced in order to 
attain precise localisation. Eyelids are localised in a similar manner, with the path of 
contour integration changed from circular to an arc. 
 
The integro-differential can be seen as a variation of the Hough transform, since it too 
makes use of first derivatives of the image and performs a search to find geometric 
parameters. Since it works with raw derivative information, it does not suffer from the 
thresholding problems of the Hough transform. However, the algorithm can fail where 
there is noise in the eye image, such as from reflections, since it works only on a local 
scale.  

2.2.3 Active Contour Models 
 
Ritter et al. [17] make use of active contour models for localising the pupil in eye 
images. Active contours respond to pre-set internal and external forces by deforming 
internally or moving across an image until equilibrium is reached. The contour 
contains a number of vertices, whose positions are changed by two opposing forces, 
an internal force, which is dependent on the desired characteristics, and an external 
force, which is dependent on the image. Each vertex is moved between time t and t + 
1 by 
 

)()()()1( tGtFtvtv iiii ++=+  (2.4) 

 
where Fi is the internal force, Gi is the external force and vi is the position of vertex i. 
For localisation of the pupil region, the internal forces are calibrated so that the 
contour forms a globally expanding discrete circle. The external forces are usually 
found using the edge information. In order to improve accuracy Ritter et al. use the 
variance image, rather than the edge image. 
 
A point interior to the pupil is located from a variance image and then a discrete 
circular active contour (DCAC) is created with this point as its centre. The DCAC is 
then moved under the influence of internal and external forces until it reaches 
equilibrium, and the pupil is localised. 

2.2.4 Eyelash and Noise Detection 
 
Kong and Zhang [15] present a method for eyelash detection, where eyelashes are 
treated as belonging to two types, separable eyelashes, which are isolated in the 
image, and multiple eyelashes, which are bunched together and overlap in the eye 

 6



 

image. Separable eyelashes are detected using 1D Gabor filters, since the convolution 
of a separable eyelash with the Gaussian smoothing function results in a low output 
value. Thus, if a resultant point is smaller than a threshold, it is noted that this point 
belongs to an eyelash. Multiple eyelashes are detected using the variance of intensity. 
If the variance of intensity values in a small window is lower than a threshold, the 
centre of the window is considered as a point in an eyelash. The Kong and Zhang 
model also makes use of connective criterion, so that each point in an eyelash should 
connect to another point in an eyelash or to an eyelid. Specular reflections along the 
eye image are detected using thresholding, since the intensity values at these regions 
will be higher than at any other regions in the image. 
 

2.3 Implementation 
 
It was decided to use circular Hough transform for detecting the iris and pupil 
boundaries. This involves first employing Canny edge detection to generate an edge 
map. Gradients were biased in the vertical direction for the outer iris/sclera boundary, 
as suggested by Wildes et al. [4]. Vertical and horizontal gradients were weighted 
equally for the inner iris/pupil boundary. A modified version of Kovesi’s Canny edge 
detection MATLAB® function [22] was implemented, which allowed for weighting of 
the gradients. 
 
The range of radius values to search for was set manually, depending on the database 
used. For the CASIA database, values of the iris radius range from 90 to 150 pixels, 
while the pupil radius ranges from 28 to 75 pixels. In order to make the circle 
detection process more efficient and accurate, the Hough transform for the iris/sclera 
boundary was performed first, then the Hough transform for the iris/pupil boundary 
was performed within the iris region, instead of the whole eye region, since the pupil 
is always within the iris region. After this process was complete, six parameters are 
stored, the radius, and x and y centre coordinates for both circles. 
 
Eyelids were isolated by first fitting a line to the upper and lower eyelid using the 
linear Hough transform. A second horizontal line is then drawn, which intersects with 
the first line at the iris edge that is closest to the pupil. This process is illustrated in 
Figure 2.2 and is done for both the top and bottom eyelids. The second horizontal line 
allows maximum isolation of eyelid regions. Canny edge detection is used to create an 
edge map, and only horizontal gradient information is taken. The linear Hough 
transform is implemented using the MATLAB® Radon transform, which is a form of 
the Hough transform. If the maximum in Hough space is lower than a set threshold, 
then no line is fitted, since this corresponds to non-occluding eyelids. Also, the lines 
are restricted to lie exterior to the pupil region, and interior to the iris region. A linear 
Hough transform has the advantage over its parabolic version, in that there are less 
parameters to deduce, making the process less computationally demanding. 
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Figure 2.2 - Stages of segmentation with eye image ‘pi201b’ from the LEI database Top left) original 
eye image Top right) two circles overlayed for iris and pupil boundaries, and two lines for top and 
bottom eyelid Bottom left) horizontal lines are drawn for each eyelid from the lowest/highest point of 
the fitted line Bottom right) probable eyelid and specular reflection areas isolated (black areas) 

 
For isolating eyelashes in the CASIA database a simple thresholding technique was 
used, since analysis reveals that eyelashes are quite dark when compared with the rest 
of the eye image. Analysis of the LEI eye images shows that thresholding to detect 
eyelashes would not be successful. Although, the eyelashes are quite dark compared 
with the surrounding eyelid region, areas of the iris region are equally dark due to the 
imaging conditions. Therefore thresholding to isolate eyelashes would also remove 
important iris region features, making this technique infeasible. However, eyelash 
occlusion is not very prominent so no technique was implemented to isolate eyelashes 
in the LEI database. 
 
The LEI database also required isolation of specular reflections. This was 
implemented, again, using thresholding, since reflection areas are characterised by 
high pixel values close to 255. For the eyelid, eyelash, and reflection detection 
process, the coordinates of any of these noise areas are marked using the MATLAB® 
NaN type, so that intensity values at these points are not misrepresented as iris region 
data. 
 

2.4 Results 
 
The automatic segmentation model proved to be successful. The CASIA database 
provided good segmentation, since those eye images had been taken specifically for 
iris recognition research and boundaries of iris pupil and sclera were clearly 
distinguished. For the CASIA database, the segmentation technique managed to 
correctly segment the iris region from 624 out of 756 eye images, which corresponds 
to a success rate of around 83%. The LEI images proved problematic and the 
segmentation process correctly identified iris and pupil boundaries for only 75 out of 
120 eye images, which corresponds to a success rate of around 62%. 
 
The problem images had small intensity differences between the iris region and the 
pupil region as shown in Figure 2.3. One problem faced with the implementation was 
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that it required different parameters to be set for each database. These parameters 
were the radius of iris and pupil to search for, and threshold values for creating edge 
maps. However, for installations of iris recognition systems, these parameters would 
only need to be set once, since the camera hardware, imaging distance, and lighting 
conditions would usually remain the same. 
 

 
Figure 2.3 – An example where segmentation fails for the LEI database. Here there is little contrast 
between pupil and iris regions, so Canny edge detection fails to find the edges of the pupil border. 

 
The eyelid detection system also proved quite successful, and managed to isolate most 
occluding eyelid regions. One problem was that it would sometimes isolate too much 
of the iris region, which could make the recognition process less accurate, since there 
is less iris information. However, this is preferred over including too much of the iris 
region, if there is a high chance it would also include undetected eyelash and eyelid 
regions. 
 
The eyelash detection system implemented for the CASIA database also proved to be 
successful in isolating most of the eyelashes occurring within the iris region as shown 
in Figure 2.4. 
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Figure 2.4 – The eyelash detection technique, eyelash regions are detected using thresholding and  
denoted as black. Note that some lighter eyelashes are not detected. Image ‘021_1_2’  from the CASIA 
database. 

 
A slight problem was that areas where the eyelashes were light, such as at the tips, 
were not detected. However, these undetected areas were small when compared with 
the size of the iris region. Isolation of specular reflections from eye images in the LEI 
database also proved to be successful and numerous examples of their isolation are 
shown in Figure 2.6. 
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Figure 2.5 – Automatic segmentation of various images from the CASIA database. Black regions 
denote detected eyelid and eyelash regions. 
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Figure 2.6 – Automatic segmentation of various im
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ages from the ‘LEI’ database, note the undetected 
occluding eyelashes in ‘ra201b’ and ‘bo201c’. Black regions denote detected eyelids and specular 
reflections. 
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Chapter 3  
 
Normalisation 
 
 

3.1 Overview 
 
Once the iris region is successfully segmented from an eye image, the next stage is to 
transform the iris region so that it has fixed dimensions in order to allow comparisons. 
The dimensional inconsistencies between eye images are mainly due to the stretching 
of the iris caused by pupil dilation from varying levels of illumination. Other sources 
of inconsistency include, varying imaging distance, rotation of the camera, head tilt, 
and rotation of the eye within the eye socket. The normalisation process will produce 
iris regions, which have the same constant dimensions, so that two photographs of the 
same iris under different conditions will have characteristic features at the same 
spatial location. 
 
Another point of note is that the pupil region is not always concentric within the iris 
region, and is usually slightly nasal [2]. This must be taken into account if trying to 
normalise the ‘doughnut’ shaped iris region to have constant radius. 
 

3.2 Literature Review 

3.2.1 Daugman’s Rubber Sheet Model 
 
The homogenous rubber sheet model devised by Daugman [1] remaps each point 
within the iris region to a pair of polar coordinates (r,θ) where r is on the interval [0,1] 
and θ is angle [0,2π].  
 

 
Figure 3.1 – Daugman’s rubber sheet model. 
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The remapping of the iris region from (x,y) Cartesian coordinates to the normalised 
non-concentric polar representation is modelled as 
 

),()),(),,(( θθθ rIryrxI →   ( 3.1) 
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where I(x,y) is the iris region image, (x,y) are the original Cartesian coordinates, (r,θ) 
are the corresponding normalised polar coordinates, and  and  are the 
coordinates of the pupil and iris boundaries along the θ direction. The rubber sheet 
model takes into account pupil dilation and size inconsistencies in order to produce a 
normalised representation with constant dimensions. In this way the iris region is 
modelled as a flexible rubber sheet anchored at the iris boundary with the pupil centre 
as the reference point. 

pp yx , ll yx ,

 
Even though the homogenous rubber sheet model accounts for pupil dilation, imaging 
distance and non-concentric pupil displacement, it does not compensate for rotational 
inconsistencies. In the Daugman system, rotation is accounted for during matching by 
shifting the iris templates in the θ direction until two iris templates are aligned. 

3.2.2 Image Registration 
 
The Wildes et al. system employs an image registration technique, which 
geometrically warps a newly acquired image,  into alignment with a selected 
database image  [4]. When choosing a mapping function to 
transform the original coordinates, the image intensity values of the new image are 
made to be close to those of corresponding points in the reference image. The 
mapping function must be chosen so as to minimise 
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with s a scaling factor and )(φR  a matrix representing rotation by φ . In 
implementation, given a pair of iris images Ia and Id, the warping parameters s and φ  
are recovered via an iterative minimisation procedure [4].  
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3.2.3 Virtual Circles 
 
In the Boles [8] system, iris images are first scaled to have constant diameter so that 
when comparing two images, one is considered as the reference image. This works 
differently to the other techniques, since normalisation is not performed until 
attempting to match two iris regions, rather than performing normalisation and saving 
the result for later comparisons. Once the two irises have the same dimensions, 
features are extracted from the iris region by storing the intensity values along virtual 
concentric circles, with origin at the centre of the pupil. A normalisation resolution is 
selected, so that the number of data points extracted from each iris is the same. This is 
essentially the same as Daugman’s rubber sheet model, however scaling is at match 
time, and is relative to the comparing iris region, rather than scaling to some constant 
dimensions. Also, it is not mentioned by Boles, how rotational invariance is obtained. 
 

3.3 Implementation 
 
For normalisation of iris regions a technique based on Daugman’s rubber sheet model 
was employed. The centre of the pupil was considered as the reference point, and 
radial vectors pass through the iris region, as shown in Figure 3.2. A number of data 
points are selected along each radial line and this is defined as the radial resolution. 
The number of radial lines going around the iris region is defined as the angular 
resolution. Since the pupil can be non-concentric to the iris, a remapping formula is 
needed to rescale points depending on the angle around the circle. This is given by 
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where displacement of the centre of the pupil relative to the centre of the iris is given 
by ox , oy, and r’ is the distance between the edge of the pupil and edge of the iris at an 
angle, θ around the region, and rI is the radius of the iris. The remapping formula first 
gives the radius of the iris region ‘doughnut’ as a function of the angle θ. 
 
A constant number of points are chosen along each radial line, so that a constant 
number of radial data points are taken, irrespective of how narrow or wide the radius 
is at a particular angle. The normalised pattern was created by backtracking to find the 
Cartesian coordinates of data points from the radial and angular position in the 
normalised pattern. From the ‘doughnut’ iris region, normalisation produces a 2D 
array with horizontal dimensions of angular resolution and vertical dimensions of 
radial resolution. Another 2D array was created for marking reflections, eyelashes, 
and eyelids detected in the segmentation stage. In order to prevent non-iris region data 
from corrupting the normalised representation, data points which occur along the 
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pupil border or the iris border are discarded. As in Daugman’s rubber sheet model, 
removing rotational inconsistencies is performed at the matching stage and will be 
discussed in the next chapter.  
 

'

Figure 3.2 – Outline of the normalisation pro
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Figure 3.3 – Illustration of the normalisation process for two images of the same iris taken under 
varying conditions. Top image ‘am201b’, bottom image ‘am201g’ from the LEI database. 

 
Normalisation of two eye images of the same iris is shown in Figure 3.3. The pupil is 
smaller in the bottom image, however the normalisation process is able to rescale the 
iris region so that it has constant dimension. In this example, the rectangular 
representation is constructed from 10,000 data points in each iris region. Note that 
rotational inconsistencies have not been accounted for by the normalisation process, 
and the two normalised patterns are slightly misaligned in the horizontal (angular) 
direction. Rotational inconsistencies will be accounted for in the matching stage. 
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Chapter 4  
 
Feature Encoding and Matching 
 
 

4.1 Overview 
 
In order to provide accurate recognition of individuals, the most discriminating 
information present in an iris pattern must be extracted. Only the significant features 
of the iris must be encoded so that comparisons between templates can be made. Most 
iris recognition systems make use of a band pass decomposition of the iris image to 
create a biometric template.  
 
The template that is generated in the feature encoding process will also need a 
corresponding matching metric, which gives a measure of similarity between two iris 
templates. This metric should give one range of values when comparing templates 
generated from the same eye, known as intra-class comparisons, and another range of 
values when comparing templates created from different irises, known as inter-class 
comparisons. These two cases should give distinct and separate values, so that a 
decision can be made with high confidence as to whether two templates are from the 
same iris, or from two different irises.  
 

4.2 Literature Review of Feature Encoding Algorithms 

4.2.1 Wavelet Encoding 
 
Wavelets can be used to decompose the data in the iris region into components that 
appear at different resolutions. Wavelets have the advantage over traditional Fourier 
transform in that the frequency data is localised, allowing features which occur at the 
same position and resolution to be matched up. A number of wavelet filters, also 
called a bank of wavelets, is applied to the 2D iris region, one for each resolution with 
each wavelet a scaled version of some basis function. The output of applying the 
wavelets is then encoded in order to provide a compact and discriminating 
representation of the iris pattern. 

4.2.2 Gabor Filters 
 
Gabor filters are able to provide optimum conjoint representation of a signal in space 
and spatial frequency. A Gabor filter is constructed by modulating a sine/cosine wave 
with a Gaussian. This is able to provide the optimum conjoint localisation in both 
space and frequency, since a sine wave is perfectly localised in frequency, but not 
localised in space. Modulation of the sine with a Gaussian provides localisation in 
space, though with loss of localisation in frequency. Decomposition of a signal is 
accomplished using a quadrature pair of Gabor filters, with a real part specified by a 
cosine modulated by a Gaussian, and an imaginary part specified by a sine modulated 
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by a Gaussian. The real and imaginary filters are also known as the even symmetric 
and odd symmetric components respectively. 
 
The centre frequency of the filter is specified by the frequency of the sine/cosine 
wave, and the bandwidth of the filter is specified by the width of the Gaussian. 
 
Daugman makes uses of a 2D version of Gabor filters [1] in order to encode iris 
pattern data. A 2D Gabor filter over the an image domain (x,y) is represented as 
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where (xo,yo) specify position in the image, (α,β) specify the effective width and 
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The odd symmetric and even symmetric 2D Gabor filters are shown in Figure 4.1. 
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where (α,β) are the same as in Equation 4.1 and (r0, θ0) specify the centre frequency 
of the filter. 
 
The demodulation and phase Quantisation process can be represented as 
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where h{Re, Im} can be regarded as a complex valued bit whose real and imaginary 
components are dependent on the sign of the 2D integral, and ),( φρI  is the raw iris 
image in a dimensionless polar coordinate system. For a detailed study of 2D Gabor 
wavelets see [26]. 

4.2.3 Log-Gabor Filters 
 
A disadvantage of the Gabor filter is that the even symmetric filter will have a DC 
component whenever the bandwidth is larger than one octave [20]. However, zero DC 
component can be obtained for any bandwidth by using a Gabor filter which is 
Gaussian on a logarithmic scale, this is known as the Log-Gabor filter. The frequency 
response of a Log-Gabor filter is given as; 
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where f0 represents the centre frequency, and σ gives the bandwidth of the filter. 
Details of the Log-Gabor filter are examined by Field [20]. 

4.2.4 Zero-crossings of the 1D wavelet 
 
Boles and Boashash [8] make use of 1D wavelets for encoding iris pattern data. The 
mother wavelet is defined as the second derivative of a smoothing function θ(x).  
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The zero crossings of dyadic scales of these filters are then used to encode features. 
The wavelet transform of a signal f(x) at scale s and position x is given by 
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where 
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Wsf(x) is proportional to the second derivative of f(x) smoothed by θs(x), and the zero 
crossings of the transform correspond to points of inflection in f*θs(x). The motivation 
for this technique is that zero-crossings correspond to significant features with the iris 
region. 

4.2.5 Haar Wavelet 
 
Lim et al. [9] also use the wavelet transform to extract features from the iris region. 
Both the Gabor transform and the Haar wavlet are considered as the mother wavelet. 
From multi-dimensionally filtering, a feature vector with 87 dimensions is computed. 
Since each dimension has a real value ranging from -1.0 to +1.0, the feature vector is 
sign quantised so that any positive value is represented by 1, and negative value as 0. 
This results in a compact biometric template consisting of only 87 bits. 
 
Lim et al. compare the use of Gabor transform and Haar wavelet transform, and show 
that the recognition rate of Haar wavelet transform is slightly better than Gabor 
transform by 0.9%. 

4.2.6 Laplacian of Gaussian Filters 
 
In order to encode features, the Wildes et al. system decomposes the iris region by 
application of Laplacian of Gaussian filters to the iris region image. The filters are 
given as 
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where σ is the standard deviation of the Gaussian and ρ is the radial distance of a point 
from the centre of the filter. 
 
The filtered image is represented as a Laplacian pyramid which is able to compress 
the data, so that only significant data remains.  Details of Laplacian Pyramids are 
presented by Burt and Adelson [24]. A Laplacian pyramid is constructed with four 
different resolution levels in order to generate a compact iris template. 
 

4.3 Literature Review of Matching Algorithms 

4.3.1 Hamming distance 
 
The Hamming distance gives a measure of how many bits are the same between two 
bit patterns. Using the Hamming distance of two bit patterns, a decision can be made 

 20



 

as to whether the two patterns were generated from different irises or from the same 
one. 
 
In comparing the bit patterns X and Y, the Hamming distance, HD, is defined as the 
sum of disagreeing bits (sum of the exclusive-OR between X and Y) over N, the total 
number of bits in the bit pattern. 
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Since an individual iris region contains features with high degrees of freedom, each 
iris region will produce a bit-pattern which is independent to that produced by another 
iris, on the other hand, two iris codes produced from the same iris will be highly 
correlated. 
 
If two bits patterns are completely independent, such as iris templates generated from 
different irises, the Hamming distance between the two patterns should equal 0.5. 
This occurs because independence implies the two bit patterns will be totally random, 
so there is 0.5 chance of setting any bit to 1, and vice versa. Therefore, half of the bits 
will agree and half will disagree between the two patterns. If two patterns are derived 
from the same iris, the Hamming distance between them will be close to 0.0, since 
they are highly correlated and the bits should agree between the two iris codes. 
 
The Hamming distance is the matching metric employed by Daugman, and 
calculation of the Hamming distance is taken only with bits that are generated from 
the actual iris region. 

4.3.2 Weighted Euclidean Distance 
 
The weighted Euclidean distance (WED) can be used to compare two templates, 
especially if the template is composed of integer values. The weighting Euclidean 
distance gives a measure of how similar a collection of values are between two 
templates. This metric is employed by Zhu et al. [11] and is specified as 
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where fi is the ith feature of the unknown iris, and  is the i)(k

if
th feature of iris 

template, k, and  is the standard deviation of the i)(k
iδ

th feature in iris template k. The 
unknown iris template is found to match iris template k, when WED is a minimum at 
k. 

4.3.3 Normalised Correlation 
 
Wildes et al. make use of normalised correlation between the acquired and database 
representation for goodness of match. This is represented as 
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where p1 and p2 are two images of size nxm, µ1 and σ1 are the mean and standard 
deviation of p1, and µ2 and σ2 are the mean and standard deviation of p2. 
 
Normalised correlation is advantageous over standard correlation, since it is able to 
account for local variations in image intensity that corrupt the standard correlation 
calculation. 
 

4.4 Implementation 

4.4.1 Feature Encoding 
 
Feature encoding was implemented by convolving the normalised iris pattern with 1D 
Log-Gabor wavelets. The 2D normalised pattern is broken up into a number of 1D 
signals, and then these 1D signals are convolved with 1D Gabor wavelets. The rows 
of the 2D normalised pattern are taken as the 1D signal, each row corresponds to a 
circular ring on the iris region. The angular direction is taken rather than the radial 
one, which corresponds to columns of the normalised pattern, since maximum 
independence occurs in the angular direction. 
 
The intensity values at known noise areas in the normalised pattern are set to the 
average intensity of surrounding pixels to prevent influence of noise in the output of 
the filtering. The output of filtering is then phase quantised to four levels using the 
Daugman method [1], with each filter producing two bits of data for each phasor. The 
output of phase quantisation is chosen to be a grey code, so that when going from one 
quadrant to another, only 1 bit changes. This will minimise the number of bits 
disagreeing, if say two intra-class patterns are slightly misaligned and thus will 
provide more accurate recognition. The feature encoding process is illustrated in 
Figure 4.2. 
 
The encoding process produces a bitwise template containing a number of bits of 
information, and a corresponding noise mask which corresponds to corrupt areas 
within the iris pattern, and marks bits in the template as corrupt. Since the phase 
information will be meaningless at regions where the amplitude is zero, these regions 
are also marked in the noise mask. The total number of bits in the template will be the 
angular resolution times the radial resolution, times 2, times the number of filters 
used. The number of filters, their centre frequencies and parameters of the modulating 
Gaussian function in order to achieve the best recognition rate will be discussed in the 
next chapter. 
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Figure 4.2 – An illustration of the feature encoding process. 
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4.4.2 Matching 
 
For matching, the Hamming distance was chosen as a metric for recognition, since 
bit-wise comparisons were necessary. The Hamming distance algorithm employed 
also incorporates noise masking, so that only significant bits are used in calculating 
the Hamming distance between two iris templates. Now when taking the Hamming 
distance, only those bits in the iris pattern that correspond to ‘0’ bits in noise masks of 
both iris patterns will be used in the calculation. The Hamming distance will be 
calculated using only the bits generated from the true iris region, and this modified 
Hamming distance formula is given as 
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where Xj and Yj are the two bit-wise templates to compare, Xnj and Ynj are the 
corresponding noise masks for Xj and Yj, and N is the number of bits represented by 
each template. 
 
Although, in theory, two iris templates generated from the same iris will have a 
Hamming distance of 0.0, in practice this will not occur. Normalisation is not perfect, 
and also there will be some noise that goes undetected, so some variation will be 
present when comparing two intra-class iris templates. 
 
In order to account for rotational inconsistencies, when the Hamming distance of two 
templates is calculated, one template is shifted left and right bit-wise and a number of 
Hamming distance values are calculated from successive shifts. This bit-wise shifting 
in the horizontal direction corresponds to rotation of the original iris region by an 
angle given by the angular resolution used. If an angular resolution of 180 is used, 
each shift will correspond to a rotation of 2 degrees in the iris region. This method is 
suggested by Daugman [1], and corrects for misalignments in the normalised iris 
pattern caused by rotational differences during imaging. From the calculated 
Hamming distance values, only the lowest is taken, since this corresponds to the best 
match between two templates. 
 
The number of bits moved during each shift is given by two times the number of 
filters used, since each filter will generate two bits of information from one pixel of 
the normalised region. The actual number of shifts required to normalise rotational 
inconsistencies will be determined by the maximum angle difference between two 
images of the same eye, and one shift is defined as one shift to the left, followed by 
one shift to the right. The shifting process for one shift is illustrated in Figure 4.3. 
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Figure 4.3 – An illustration of the shifting process. One shift is defined as one shift left, and one shift 
right of a reference template. In this example one filter is used to encode the templates, so only two bits 
are moved during a shift. The lowest Hamming distance, in this case zero, is then used since this 
corresponds to the best match between the two templates. 
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Chapter 5  
 
Experimental Results 
 
 

5.1 Overview 
 
In this chapter, the performance of the iris recognition system as a whole is examined. 
Tests were carried out to find the best separation, so that the false match and false 
accept rate is minimised, and to confirm that iris recognition can perform accurately 
as a biometric for recognition of individuals. As well as confirming that the system 
provides accurate recognition, experiments were also conducted in order to confirm 
the uniqueness of human iris patterns by deducing the number of degrees of freedom 
present in the iris template representation. 
 
There are a number of parameters in the iris recognition system, and optimum values 
for these parameters were required in order to provide the best recognition rate. These 
parameters include; the radial and angular resolution, r and θ respectively, which give 
the number of data points for encoding each template, and the filter parameters for 
feature encoding. The filter parameters include, the number of filters, N, their base 
wavelength λn, filter bandwidths given by σ/f, and the multiplicative factor between 
centre wavelengths of successive filters given by α. Also examined were the number 
of shifts required to account for rotational inconsistencies between any two iris 
representations. 
 

5.2 Data Sets 

5.2.1 Chinese Academy of Sciences - Institute of Automation 
 
The Chinese Academy of Sciences - Institute of Automation (CASIA) eye image 
database [13] contains 756 greyscale eye images with 108 unique eyes or classes and 
7 different images of each unique eye. Images from each class are taken from two 
sessions with one month interval between sessions. The images were captured 
especially for iris recognition research using specialised digital optics developed by 
the National Laboratory of Pattern Recognition, China. The eye images are mainly 
from persons of Asian decent, whose eyes are characterised by irises that are densely 
pigmented, and with dark eyelashes. Due to specialised imaging conditions using near 
infra-red light, features in the iris region are highly visible and there is good contrast 
between pupil, iris and sclera regions. 

5.2.2 Lions Eye Institute 
 
The Lions Eye Institute database [14] consists of 120 greyscale eye images taken 
using a slit lamp camera. Since the images were captured using natural light, specular 
reflections are present on the iris, pupil, and cornea regions. Unlike the CASIA 
database, the LEI database was not captured specifically for iris recognition. 

 26



 

 

5.2.3 Actual Data Sets 
 
It was not possible to use all of the eye images from each database, since perfect 
segmentation success rates were not attained. Instead a sub-set of each database was 
selected, which contained only those images that were segmented successfully. The 
details of each sub-set are outlined in Table 5.1. 
 
Set Name Super Set Number of Eye 

Images 
Possible Intra-Class 

Comparisons 
Possible Inter-Class 

Comparisons 
CASIA-a CASIA 624 1679 192,699 

LEI-a LEI 75 131 2646 

Table 5.1 – Eye image sets used for testing the system. 

 
With the ‘CASIA-a’ data set 192,699 unique inter-class comparisons are possible. In 
other words 192,699 Hamming distance values are calculated. However, with 
template shifting, the number of comparisons increases significantly. With 10 shifts 
left and right, that is 20 shifts in total, the ‘CASIA-a’ data set performs 3,853,980 
unique comparisons when calculating all possible inter-class values, but only 192,699 
Hamming distance values are used. 
 

5.3 Uniqueness of Iris Patterns 

5.3.1 Overview 
 
The first test was to confirm the uniqueness of iris patterns. Testing the uniqueness of 
iris patterns is important, since recognition relies on iris patterns from different eyes 
being entirely independent, with failure of a test of statistical independence resulting 
in a match. Uniqueness was determined by comparing templates generated from 
different eyes to each other, and examining the distribution of Hamming distance 
values produced. This distribution is known as the inter-class distribution. 
 
According to statistical theory, the mean Hamming distance for comparisons between 
inter-class iris templates will be 0.5. This is because, if truly independent, the bits in 
each template can be thought of as being randomly set, so there is a 50% chance of 
being set to 0 and a 50% chance of being set to 1. Therefore, half of the bits will agree 
between two templates, and half will disagree, resulting in a Hamming distance of 
0.5. 
 
The templates are shifted left and right to account for rotational inconsistencies in the 
eye image, and the lowest Hamming distance is taken as the actual Hamming 
distance. Due to this, the mean Hamming distance for inter-class template 
comparisons will be slightly lower than 0.5, since the lowest Hamming distance out of 
several comparisons between shifted templates is taken. As the number of shifts 
increases, the mean Hamming distance for inter-class comparisons will decrease 
accordingly.  
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Uniqueness was also be determined by measuring the number of degrees of freedom 
represented by the templates. This gives a measure of the complexity of iris patterns, 
and can be calculated by approximating the collection of inter-class Hamming 
distance values as a binomial distribution. The number of degrees of freedom, DOF, 
can be calculated by: 
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where p is the mean, and σ is the standard deviation of the distribution.  

5.3.2 Results 
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Figure 5.1 – Inter-class Hamming distance distribution of the ‘CASIA-a’ data set (top) and the ‘LEI-a’ 
data set (bottom) with no shifts when comparing templates. Encoded with one filter. 
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Inter-class Comparisons with 10 Shifts 
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Figure 5.2 – Inter-class Hamming distance distribution of the ‘CASIA-a’ data set (top) and the ‘LEI-a’ 
data set (bottom) with 10 shifts left and right when comparing templates. Encoded with one filter. 

5.3.3 Conclusion 
 
As Figure 5.1 shows, the inter-class Hamming distance distributions conform to the 
theory of statistical independence, since the mean of the distribution equals 0.5. 
Therefore it can be stated that for both data sets, ‘CASIA-a’ and ‘LEI-a’, iris 
templates generated are highly unique, in that comparing any two templates generated 
from different irises is equivalent to comparing two random bit patterns. Also, the 
number of degrees calculated for both data sets shows the complexity of the iris, with 
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1068 degrees of freedom represented by the ‘CASIA-a’ data set, and 738 degrees of 
freedom represented by the ‘LEI-a’ data set. 
 
As shifting was introduced, so that intra-class templates were properly lined up, the 
mean inter-class Hamming distance value decreased as expected. With 10 shifts the 
mean decreased to 0.47 for both ‘CASIA-a’ and ‘LEI-a’ data sets as shown in Figure 
5.2. The standard deviation of inter-class distribution was also reduced, this was 
because the lowest value from a collection was selected, which reduced outliers and 
spurious values. 
 
The shifting also caused a reduction in the number of degrees of freedom, DOF. This 
reduction in DOF is an anomaly caused by a smaller standard deviation, which itself 
is caused by taking the lowest Hamming distance from 10 calculated values. This 
shows that, due to shifting, the distribution is not merely shifted towards the left, but 
the characteristics of the distribution are changed. Therefore the degrees of freedom 
formula is not very useful with shifting introduced, since it relies on the distribution 
approximating a binomial. 
 

5.4 Recognition of Individuals 

5.4.1 Overview 
 
The key objective of an iris recognition system is to be able to achieve a distinct 
separation of intra-class and inter-class Hamming distance distributions. With clear 
separation, a separation Hamming distance value can be chosen which allows a 
decision to be made when comparing two templates. If the Hamming distance 
between two templates is less than the separation point, the templates were generated 
from the same iris and a match is found. Otherwise if the Hamming distance is greater 
than the separation point the two templates are considered to have been generated 
from different irises. 
 
The distance between the minimum Hamming distance value for inter-class 
comparisons and maximum Hamming distance value for intra-class comparisons 
could be used as a metric to measure separation; however, this is not a very accurate 
measure since outliers will corrupt the value calculated, and the measure is dependent 
on the number of iris templates compared. A better metric is ‘decidability’ [2], which 
takes into account the mean and standard deviation of the intra-class and inter-class 
distributions. 
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decidability, the greater the separation of intra-class and inter-class distributions, 
which allows for more accurate recognition. 
 
With a pre-determined separation Hamming distance, a decision can be made as to 
whether two templates were created from the same iris (a match), or whether they 
were created from different irises. However, the intra-class and inter-class 
distributions may have some overlap, which would result in a number of incorrect 
matches or false accepts, and a number of mismatches or false rejects. 
 
The false reject rate (FRR), also known as Type I error [25], measures the probability 
of an enrolled individual not being identified by the system. The false accept rate 
(FAR), also known as Type II error [25], measures the probability of an individual 
being wrongly identified as another individual. The false accept and false reject rates 
can be calculated by the amount of overlap between two distributions, which is 
illustrated in Figure 5.3. The false accept rate is defined by the normalised area 
between 0 and the separation point, κ, in the inter-class distribution Pdiff. The false 
reject rate is defined as the normalised area between the separation point, κ, and 1 in 
the intra-class distribution Psame. 
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Clearly the separation point will influence the false accept and false reject rates, since 
a lower separation Hamming distance will decrease FAR while increasing FRR, and 
vice versa. Therefore, when choosing a separation point it is important to consider 
both the false accept rate and false reject rate. 
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Figure 5.3 – False Accept and False Reject Rates for two distributions with a separation Hamming 
distance of 0.35. 

 
The decidability metric will determine the optimum parameters. Once optimum 
parameters have been found, the performance of this optimal configuration will be 
measured by calculating the false accept and false reject rates. 

5.4.2 Filter Parameters 
 
For the encoding process the outputs of each filter should be independent, so that 
there are no correlations in the encoded template, otherwise the filters would be 
redundant. For maximum independence, the bandwidths of each filter must not 
overlap in the frequency domain, and also the centre frequencies must be spread out. 
Since information on filter parameters for encoding iris templates was lacking, the 
best filter parameters were found through experimentation with the ‘LEI-a’ data set. 
Once satisfactory filter parameters were found for the ‘LEI-a’ data set, they were 
tested on the ‘CASIA-a’ data set to compare performance. The ‘CASIA-a’ data set is 
relatively large and blind experimentation would have required continuously 
generating inter-class distributions until optimum parameters were found. Generation 
of the inter-class distribution is significantly more time consuming than with the ‘LEI-
a’ data set, since millions rather than thousands of Hamming distance calculations are 
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required. The results of employing various filter parameters to encode iris templates 
are presented below. 
 
 

Decidability vs Centre Wavelength for Three Different Filter 
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Figure 5.4 – Decidability of the ‘LEI-a’ data set encoded with a template size of 20x240, and with 3 
shifts left and right. Values used in construction of this plot can be found in Appendix C. 
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N λmin α σ/f µs σs µd σd d` 
2 11.0 2.0 0.5 0.2421 0.0604 0.4808 0.0167 5.3848 
2 11.0 3.0 0.5 0.2424 0.0610 0.4798 0.0218 5.1831 
2 11.0 4.0 0.5 0.2469 0.0612 0.4786 0.0270 4.9024 
2 11.0 5.0 0.5 0.2514 0.0629 0.4762 0.0320 4.5049 
2 12.0 2.0 0.5 0.2396 0.0610 0.4801 0.0182 5.3410 
2 12.0 3.0 0.5 0.2416 0.0614 0.4792 0.0238 5.1020 

2 12.0 4.0 0.5 0.2464 0.0620 0.4775 0.0293 4.7651 

2 12.0 5.0 0.5 0.2511 0.0643 0.4748 0.0343 4.3414 

2 11.0 2.0 0.7 0.2477 0.0626 0.4806 0.0174 5.0720 

2 11.0 3.0 0.7 0.2513 0.0639 0.4790 0.0238 4.7251 

2 11.0 4.0 0.7 0.2561 0.0623 0.4793 0.0304 4.5500 

2 11.0 5.0 0.7 0.2588 0.0650 0.4772 0.0357 4.1666 

3 11.0 2.0 0.5 0.2416 0.0614 0.4789 0.0243 5.0827 

3 11.0 3.0 0.5 0.2534 0.0661 0.4712 0.0389 4.0172 

3 11.0 4.0 0.5 0.2608 0.0729 0.4702 0.0572 3.1967 

3 11.0 5.0 0.5 0.2659 0.0782 0.4696 0.0679 2.7834 

Table 5.2 – Decidability of the ‘LEI-a’ data set encoded using multiple filters with 3 shifts left and 
right, and a template size of 20x240. 
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Decidability vs Centre Wavelength for Sigma/f of 0.5
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Figure 5.5 – Decidability verus centre wavelength for the CASIA-a data set using one filter, with 
bandwidth given by σ/f of 0.5. Values used in construction of this plot can be found in Appendix C. 
 
 
 
N λmin α σ/f µs σs µd σd d` 

1 18.0 - 0.3 0.2881 0.0391 0.4553 0.0218 5.2807 
2 18.0 2 0.5 0.2760 0.0414 0.4591 0.0224 5.5034 
2 18.0 3 0.5 0.2691 0.0442 0.4444 0.0321 4.5367 

Table 5.3 – Further testing of Filter parameters for ‘CASIA-a’ with template size of 20x240. 
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Figure 5.4 and 

Decidability vs Centre Wavelength for Sigma/f of 0.5
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Figure 5.5 show that there exits an optimum centre wavelength for each data set, 
which produces maximum decidability. Furthermore, Table 5.2 and Table 5.3 show 
that encoding templates with multiple filters does not produce better decidability 
values, therefore the optimum number of filters is just one. As well as providing good 
representation of iris features, one filter also produces a compact iris template. 
 
The optimum σ/f value was found to be 0.50, which corresponds to a filter bandwidth 
of around 2 octaves. However, the optimum centre wavelengths for the two data sets 
were found to be different. The ‘LEI-a’ was responsive to a centre wavelength of 12.0 
pixels, which gave a maximum decidability of 5.4292. The ‘CASIA-a’ was sensitive 
to a centre wavelength of 18.0 pixels, which corresponded to a maximum decidability 
value of 6.1987. This difference in optimum wavelengths can be attributed to the 
different imaging conditions of each database, since it is stated by Daugman [2] that 
under infrared light, deeper and somewhat slowly modulated stromal features 
dominate the iris pattern. Also, the lower optimum decidability value for the ‘LEI-a’ 
data set can be attributed to undetected eyelashes within the iris region, which result 
in an increased standard deviation of the intra-class distribution and thus lower 
decidability value. 

5.4.3 Template Resolution 
 
One factor, which will significantly influence the recognition rate is the radial and 
angular resolution used during normalisation, since this determines the amount of iris 
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pattern data, which goes into encoding the iris template. Table 5.4 and Table 5.5 show 
decidability values generated from encoding templates with various radial and angular 
resolution dimensions. 
  
 40 80 120 160 200 240 280 
4 1.6814 3.2875 4.475 4.8079 5.101 5.1188 5.0576 
8 1.8958 3.6256 4.6205 5.0381 5.2742 5.2933 5.0553 
12 2.0018 3.7906 4.8951 5.3586 5.4307 5.4828 5.2459 
16 2.0013 3.8192 4.7629 5.1884 5.3176 5.3291 5.1295 
20 2.0261 3.8385 4.9318 5.3107 5.3854 5.4292 5.188 
24 2.0436 3.7438 4.8384 5.2405 5.2859 5.3539 5.1141 
28 2.0624 3.8248 4.8315 5.2278 5.3254 5.3568 5.1259 
32 2.0878 3.8549 4.8623 5.2107 5.3158 5.3241 5.0838 

Table 5.4 – Decidability of the ‘LEI-a’ data set with various template dimensions. Encoded using one 
filter with centre wavelength of 12.0 pixels, σ/f of 0.5, and performing 3 shifts left and right. 

 
 40 80 120 160 200 240 280 
4 1.2392 1.9836 3.0532 4.0734 4.7322 5.0275 5.4426 
8 1.4138 2.3720 3.6138 4.8066 5.4537 5.5201 5.5323 
12 1.4867 2.4373 3.8319 5.0286 5.6800 5.9310 5.9028 
16 1.5139 2.5218 3.9394 5.1311 5.9114 6.1102 6.1344 
20 1.5272 2.5400 3.9903 5.2281 6.0123 6.1987 6.2103 
24 1.5270 2.5872 4.0103 5.3412 6.0939 6.2559 6.2748 
28 1.5314 2.5805 4.1204 5.2810 6.1091 6.3134 6.2994 
32 1.5412 2.5955 4.0903 5.3390 6.1832 6.3223 6.3111 

Table 5.5 – Decidability of the ‘CASIA-a’ data set with various template dimensions. Encoded using 
one filter with centre wavelength of 18.0 pixels, σ/f of 0.5, and performing 8 shifts left and right. 

 
The optimum template size for the ‘LEI-a’ data set was found to be 20x240, that is a 
radial resolution of 20 pixels, and an angular resolution of 240 pixels. For the 
‘CASIA-a’ data set, the optimum template size was found to be 32x240 pixels. 
However, to provide a compact and efficient coding, a lower radial resolution can be 
used with only minor effect on decidability. 

5.4.4 Number of shifts 
 
The optimum number of template shifts to account for rotational inconsistencies can 
be determined by examining the mean and standard deviation of the intra-class 
distribution. Without template shifting the intra-class Hamming distance distribution 
will be more randomly distributed, since templates, which are not properly aligned, 
will produce Hamming distance values equivalent to comparing inter-class templates. 
As the number of shifts increases, the mean of the intra-class distribution will 
converge to a constant value, since all rotational inconsistencies would have been 
accounted for. 
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Mean of Intra-class HD Distribution vs Number of 
Shifts
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Figure 5.6 – Mean of the intra-class Hamming distance distribution as a function of the number of 
shifts performed. Values used in construction of this plot can be found in Appendix C. 
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Figure 5.7 – Standard deviation of the intra-class Hamming distance distribution as a function of the 
number of shifts performed. Values used in construction of this plot can be found in Appendix C. 
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Intra-Class Distribution with 0 Shifts 
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Figure 5.8 – Intra-class distribution of the ‘CASIA-a’ data set with no shifts. 
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Intra-Class Distribution with 4 Shifts Left and Right 
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Figure 5.9 - Intra-class distribution of the ‘CASIA-a’ data set with 4 shifts left and right. 

With reference to Figure 5.6 and Figure 5.7, the ‘LEI-a’ data set reaches its minimum 
mean and standard deviation after 3 shifts, while the ‘CASIA-a’ data set requires 8 
shifts to reach its minimum. However, it is noted that 4 shifts are enough to be able to 
account for most of the rotational inconsistencies in the ‘CASIA-a’ data set. 
 
It can be seen from Figure 5.8 that with zero shifts of templates, the intra-class 
Hamming distance values become spread out towards 0.5, since due to rotational 
inconsistencies a significant number of templates are not aligned. Also, there are a 
number of Hamming distance values around 0.6. This shows that when templates are 
misaligned their bit patterns become almost inverted, resulting in a high ratio of 
disagreeing bits. With 10 shifts left and right the intra-class Hamming distance values 
become much closer distributed around the mean, since rotational inconsistencies 
have now been eliminated. 

5.4.5 Conclusion 
 
In summary, the optimum encoding of iris features was with one 1D Log-Gabor filter 
with a bandwidth given by a σ/f of 0.5. The centre wavelength of this filter was found 
to be dependent on the data set used. A centre wavelength of 12.0 pixels provided 
optimum decidability for the ‘LEI-a’, while 18.0 pixels proved optimal for the 
‘CASIA-a’ data set. An optimum template size with radial resolution of 20 pixels, and 
angular resolution of 240 pixels was chosen for both data sets. These parameters 
generate a biometric template that contains 9600 bits of information. In order to 
correct for rotational inconsistencies 3 shifts left and right were required for each 
comparison of templates from the ‘LEI-a’ data set, and 8 shifts left and right were 
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required when comparing templates from the ‘CASIA-a’ data set. Now that optimum 
parameters have been determined, the recognition performance was examined next. 
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Figure 5.10 – Distribution of intra-class and inter-class Hamming distances using the ‘LEI-a’ data set, 
encoded with one filter with centre wavelength of 12.0 pixels, σ/f of 0.5, template size of 20x240, and 3 
shifts left and right. 

 
The above figure shows a good separation of intra-class and inter-class Hamming 
distance values. A Hamming distance value of 0.4 can be chosen as a separation 
point, so that if any two templates generate a Hamming distance value greater than 
0.4, they are deemed to be generated from different irises. If two templates generate a 
Hamming distance value lower than 0.4 then the two are deemed to be from the same 
iris. 
 

 41



 

Intra-class 
Comparisons 

µs = 0.2876 

Fr
eq

ue
nc

y 

σs = 0.0394 

 
Figure 5.11 – Distribution of intra-class and inter-class Hamming distances using the ‘CASIA-a’ data 
set, encoded with one filter with centre wavelength of 18.0 pixels, σ/f of 0.5, template size of 20x240, 
and 8 shifts left and right. 

 
Figure 5.10 and Figure 5.11 show Hamming distance distributions with slight overlap. 
However, the means of the intra-class and inter-class distributions are still clearly 
separated, so recognition is still possible. The accuracy of recognition with these 
distributions can be determined by calculating their false accept and false reject rates 
with different separation points. 
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Threshold FAR (%) FRR (%) 
0.20 0.000 74.046 
0.25 0.000 45.802 
0.30 0.000 25.191 
0.35 0.000 4.580 
0.40 0.000 0.000 
0.45 2.494 0.000 
0.50 92.819 0.000 

Table 5.6 – False accept and false reject rates for the ‘LEI-a’ data set with different separation 
points using the optimum parameters. 

 
Threshold FAR (%) FRR (%) 
0.20 0.000 99.047 
0.25 0.000 82.787 
0.30 0.000 37.880 
0.35 0.000 5.181 
0.40 0.005 0.238 
0.45 7.599 0.000 
0.50 99.499 0.000 

Table 5.7 – False accept and false reject rates for the ‘CASIA-a’ data set with different separation 
points using the optimum parameters. 

 
For the ‘LEI-a’ data set, perfect recognition is possible by selecting a separation 
Hamming distance of 0.40, which gives false accept rate and false reject rate both as 
0.000%. However, with the ‘CASIA-a’ data set perfect recognition is not possible due 
to the overlapping distributions. With a separation point of 0.4 a false accept rate and 
false reject rate of 0.005% and 0.238% respectively is achieved, which still allows for 
accurate recognition. 
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Chapter 6  
 
Conclusion 
 
 

6.1 Summary of Work 
 
This thesis has presented an iris recognition system, which was tested using two 
databases of greyscale eye images in order to verify the claimed performance of iris 
recognition technology. 
 
Firstly, an automatic segmentation algorithm was presented, which would localise the 
iris region from an eye image and isolate eyelid, eyelash and reflection areas. 
Automatic segmentation was achieved through the use of the circular Hough 
transform for localising the iris and pupil regions, and the linear Hough transform for 
localising occluding eyelids. Thresholding was also employed for isolating eyelashes 
and reflections. 
 
Next, the segmented iris region was normalised to eliminate dimensional 
inconsistencies between iris regions. This was achieved by implementing a version of 
Daugman’s rubber sheet model, where the iris is modelled as a flexible rubber sheet, 
which is unwrapped into a rectangular block with constant polar dimensions. 
 
Finally, features of the iris were encoded by convolving the normalised iris region 
with 1D Log-Gabor filters and phase quantising the output in order to produce a bit-
wise biometric template. The Hamming distance was chosen as a matching metric, 
which gave a measure of how many bits disagreed between two templates. A failure 
of statistical independence between two templates would result in a match, that is, the 
two templates were deemed to have been generated from the same iris if the 
Hamming distance produced was lower than a set Hamming distance. 
 

6.2 Summary of Findings 
 
Analysis of the developed iris recognition system has revealed a number of interesting 
conclusions. It can be stated that segmentation is the critical stage of iris recognition, 
since areas that are wrongly identified as iris regions will corrupt biometric templates 
resulting in very poor recognition. The results presented in Chapter 2 have also shown 
that segmentation can be the most difficult stage of iris recognition because its 
success is dependent on the imaging quality of eye images. With the LEI database 
only 62% of the images managed to segment successfully due to poor imaging 
conditions, while 83% of the CASIA database images segmented correctly. 
 
Another interesting finding was that the encoding process only required one 1D Log-
Gabor filter to provide accurate recognition, since the open literature mentions the use 
of multi-scale representation in the encoding process. Also the optimum centre 
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wavelength was found to be dependent on imaging conditions, since different lighting 
conditions will produce features of different frequencies. 
 
The optimum centre wavelength for the ‘LEI-a’ data set was found to be 12.0 pixels, 
while the ‘CASIA-a’ provided optimum recognition when encoded using a filter with 
centre wavelength of 18.0 pixels. For both data sets, a filter bandwidth with σ/f of 0.5, 
and template resolution of 20 pixels by 240 pixels was found to provide optimum 
encoding. For the ‘LEI-a’ data set, perfect recognition was possible with false accept 
and false reject rates of 0%. A near-perfect recognition rate was achieved with the 
‘CASIA-a’ data set, with a separation point of 0.4, a false accept rate of 0.005% and 
false reject rate of 0.238% was possible. These results confirm that iris recognition is 
a reliable and accurate biometric technology. 
 

6.3 Suggestions for Future Work 
 
The system presented in this publication was able to perform accurately, however 
there are still a number of issues which need to be addressed. First of all, the 
automatic segmentation was not perfect, since it could not successfully segment the 
iris regions for all of the eye images in the two databases. In order to improve the 
automatic segmentation algorithm, a more elaborate eyelid and eyelash detection 
system could be implemented, such as the one suggested by Kong and Zhang [15]. 
 
An improvement could also be made in the speed of the system. The most 
computation intensive stages include performing the Hough transform, and 
calculating Hamming distance values between templates to search for a match. Since 
the system is implemented in MATLAB®, which is an interpreted language, speed 
benefits could be made by implementing computationally intensive parts in C or C++. 
Speed was not one of the objectives for developing this system, but this would have to 
be considered if using the system for real-time recognition. 
 
Another extension to the system would be to interface it to an iris acquisition camera. 
Now rather than having a fixed set of iris images from a database, a frame grabber can 
be used to capture a number of images, possibility improving the recognition rate.  
 
An optimisation whose feasibility could be examined with use of an acquisition 
camera would be the use of both eyes to improve the recognition rate. In this case, 
two templates would be created for each individual, one for the left eye and one for 
the right eye. This configuration would only accept an individual if both eyes match 
to corresponding templates stored in the database. The recognition rates produced for 
this optimisation would need to be balanced with the increased imaging difficultly, 
and inconvenience to the user. 
 

6.4 Anomalies 
 
Although the developed system has recorded good results with the data sets presented, 
there are still some factors to consider if the software was to be used with a hardware 
camera. Contact lenses are available which can change the colour of an individual’s 
iris. These present a problem to any iris recognition system, since a fake iris pattern is 
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printed on the surface of the lens, and will falsely reject an enrolled user, or falsely 
accept them, if the fake iris pattern has been enrolled in the database. 
Another problem to consider, although it would be quite minor, is that the border of 
any contact lens is slightly visible in an eye image, and this circular border may 
confuse the automatic segmentation algorithm in detecting it as the iris boundary. 
Also, a high portion of the population wear spectacles, so if imaging the eye region, 
the spectacles may introduce too much specular reflection resulting in failure of 
automatic segmentation and/or recognition. 
 
A high-resolution photograph of a human eye could also be presented to an iris 
recognition camera, resulting in an unauthorised match. Wildes presents a solution to 
counteract this by using the fact that a live iris will undergo a constant state of small 
oscillation [4]. Wildes suggests that this situation can be avoided by checking for 
these small changes in pupil size between successive captures of the eye. Although, 
these factors are rarely considered in the open literature, they are critical to the 
accuracy and success of iris recognition as a biometric technology. 

The MATLAB® source code for the iris recognition software presented in this 
publication is available via the World Wide Web at the address. 
http://www.csse.uwa.edu.au/~masekl01/
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Appendix A 
 
Original Honours Proposal 
 
 
 
 
Updated 12 June 2003 
 
Title: Human Iris Patterns as a Form of Biometric Identification 
Author: Libor Masek (masekl01@csse.uwa.edu.au) 
Supervisor: Dr. Peter Kovesi 
 

Background 
 
The human iris contains a very unique pattern which can be used as the basis for 
biometric identification of individuals. Iris patterns possess high inter-class 
dependency, and low intra-class dependency [6], furthermore, the iris is enclosed by 
the cornea, making the iris pattern stable throughout adult life. These features make 
iris recognition, potentially, a very accurate biometric technology, allowing non-
intrusive scanning with a low failure rate. 
 
Iris recognition involves first extracting the iris from a digital eye image, and then 
encoding the unique patterns of the iris in such a way that they can be compared with 
pre-registered iris patterns. Since each individual iris has enormous pattern variability 
[6], large databases can be searched without fear of a false match. 
 
The most widely used and successful commercial iris recognition system was 
developed and patented by Daugman [5] in 1994. Trials of Daugman’s system have 
reported a false error match rate of zero [6], a very impressive figure when compared 
with systems such as facial recognition with error rates of around 50% [6]. Many 
other systems have been developed or proposed which use similar techniques to 
Daugman. These include prototype systems developed by Wildes et al [4], and Boles 
[8]. 
  

Aim 
 
The goal of my project will be to develop an open source implementation of 
Daugman’s system, in order to independently evaluate the algorithm. More specific 
goals of my project will be to automate the segmentation of the iris, previously done 
manually by Tun [19], and investigation of optimum parameters for biometric 
template encoding. 
 
Although the techniques of Daugman will be studied closely, I will also experiment 
with other techniques, such as those documented by Wildes et al. [4], Boles [8] and 
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Kong et al. [15]. I will develop a generic open-source implementation rather than one 
based entirely on Daugman’s methods. 

Method 
 
The first stage will be to develop an algorithm to automatically segment the iris region 
from an eye image. This will require research into many different techniques such as 
Daugman’s integro-differential operator, circular Hough transform, and active contour 
models [18]. 
 
Following this, the next stage will be to normalize the iris region in order to 
counteract imaging inconsistencies such as pupil dilation. An implementation of 
Daugman’s polar representation [2] will be used for this purpose, as this is the most 
documented method for iris normalization. 
 
Once a normalised iris pattern has been obtained, it will be convolved with 2D Gabor 
wavelets in order to extract features. This method is well documented in papers by 
Daugman [2], and also Boles [8] and a MATLAB® function by Kovesi [22] is 
available to perform Gabor wavelet analysis. 
 
Finally, matching and statistical analysis will be performed in order to test how well 
iris patterns can be identified against a database of pre-registered iris patterns. Again, 
this is well documented in the open literature. 
 
In the early stages of the project, the primary objective will be to get results. Once 
results are obtained and analysed, the different parts of the software will be optimised, 
corrected and matching re-run. This iterative cycle will proceed until satisfactory 
results are obtained.  
 
 
Wk Uni. Project Activities Deadlines 
10 1  
11 2 

Study segmentation techniques 
 

12 3 Implement segmentation Proposal due 
13 4 Implement normalisation  
14 5 Study wavelets  
15 6  
16 7 

Implement feature encoding 
 

17 Break Study matching, start literature review  
18 8  
19 9  
20 10 

Implement matching and comparison testing 

 
21 11  
22 12  
23 13 

Run matching, Study and analyse results of matching 
 

 
24 Break Exam preparation Updated Proposal due 
25   
26 

Exams 
  

27  
28 

Continue work on matching 
 

29 

Break 

Start dissertation  
30 1  
31 2 

Experiment with segmentation, and perfect and 
optimize segmentation  
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32 3   
33 4  
34 5  
35 6  
36 7 

Perfect feature encoding, perform matching and study 
results. Experiment with parameters and tweak code 

 
37 8  
38 9  
39 

Write up draft dissertation for review 

Draft dissertation due 
40 

Break 
 

41 10  
42 11 

Dissertation 

 
43 12 
44 13 

Seminar preparation, and finalising of dissertation Project seminar 

45 Break  Final dissertation due  

Table A.1 – Project Timetable 

Software and Hardware Requirements 
 
The software to perform iris recognition will be developed using the MATLAB® 
development environment. Coding will be done using a modular approach, so that key 
components can be updated and tested independently. 
 
A computer system with an Intel Pentium IV processor running at 2533 MHz will be 
used; this should provide adequate processing power for compute intensive parts of 
the software, such as segmentation, and matching. 
 
In order to further improve performance, compute intensive parts of the software can 
be written in C, using MATLAB® MEX files. However, this will be a low priority 
activity and will only be done if time permits. 
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Appendix B 
 
System Overview 
 
 
 
 

addcircle

linecoords

normaliseiris

gaborconvolve

encode

shiftbits

gethammingdistance

houghcircle

nonmaxsup

adjgamma

canny

segmentiris
findline

hysthresh

findcircle

createIrisTemplate

circlecoords

 

Normalisation and Feature Encoding 

Automatic Segmentation 

Matching 

Figure B.1 – An overview of the sub-systems and MATLAB  functions that make up the iris recognition software system. ®
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Appendix C 
 
Detailed Experimental Results 
 
 
λmin µs σs µd σd d` DOF 
2.0 0.4522 0.0317 0.4843 0.0073 1.3910 4640 

3.0 0.4162 0.0443 0.4849 0.0065 2.1716 5959 

4.0 0.3731 0.0553 0.4823 0.0079 2.7676 3951 
5.0 0.3394 0.0598 0.4808 0.0088 3.3091 3206 
6.0 0.3127 0.0631 0.4786 0.0100 3.6696 2475 
7.0 0.2914 0.0641 0.4762 0.0123 4.0080 1695 
8.0 0.2754 0.0626 0.4742 0.0139 4.3874 1313 
9.0 0.2658 0.0613 0.4737 0.0148 4.6636 1131 
10.0 0.2605 0.0605 0.4738 0.0154 4.8299 1048 
11.0 0.2569 0.0613 0.4742 0.0162 4.8445 951 
12.0 0.2531 0.0617 0.4743 0.0175 4.8728 814 
13.0 0.2495 0.0623 0.4743 0.0197 4.8643 644 
14.0 0.2465 0.0628 0.4737 0.0216 4.8385 532 
15.0 0.2469 0.0633 0.4734 0.0233 4.7475 460 
16.0 0.2481 0.0632 0.4734 0.0248 4.6945 405 
17.0 0.2490 0.0654 0.4734 0.0263 4.5029 360 
18.0 0.2485 0.0664 0.4728 0.0281 4.4026 317 
19.0 0.2485 0.0678 0.4722 0.0297 4.2756 282 
20.0 0.2481 0.0683 0.4718 0.0312 4.2148 255 
21.0 0.2462 0.0683 0.4713 0.0326 4.2064 234 
22.0 0.2450 0.0693 0.4706 0.0339 4.1345 217 
23.0 0.2439 0.0700 0.4700 0.0352 4.0804 201 
24.0 0.2430 0.0719 0.4694 0.0365 3.9712 187 
25.0 0.2432 0.0733 0.4688 0.0380 3.8640 173 

Table C.1 – Decidability of the ‘LEI-a’ data set with various centre wavelengths using just one 
filter, with sigmaOnF of  0.75 with a template size of 20x240,  and 3 shifts. 
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λmin µs σs µd σd d` DOF 
2.0 0.4100 0.0432 0.4867 0.0051 2.4932 9477 

3.0 0.3747 0.0490 0.4859 0.0056 3.1858 7940 

4.0 0.3439 0.0542 0.4846 0.0065 3.6443 5965 

5.0 0.3201 0.0575 0.4836 0.0076 3.9840 4337 

6.0 0.3002 0.0582 0.4827 0.0086 4.3870 3342 

7.0 0.2867 0.0587 0.4823 0.0096 4.6530 2712 

8.0 0.2754 0.0590 0.4820 0.0104 4.8802 2324 

9.0 0.2663 0.0587 0.4817 0.0111 5.1018 2021 

10.0 0.2590 0.0590 0.4815 0.0121 5.2284 1703 

11.0 0.2531 0.0587 0.4813 0.0131 5.3653 1460 

12.0 0.2487 0.0589 0.4810 0.0140 5.4292 1272 

13.0 0.2448 0.0601 0.4806 0.0150 5.3850 1126 

14.0 0.2419 0.0604 0.4802 0.0157 5.4015 1011 

15.0 0.2394 0.0612 0.4798 0.0167 5.3588 897 

16.0 0.2372 0.0610 0.4794 0.0179 5.3854 781 

17.0 0.2357 0.0615 0.4789 0.0190 5.3460 691 

18.0 0.2348 0.0618 0.4784 0.0202 5.3015 613 

19.0 0.2335 0.0626 0.4780 0.0214 5.2262 547 

20.0 0.2323 0.0631 0.4775 0.0225 5.1756 492 

21.0 0.2313 0.0634 0.4770 0.0238 5.1299 442 

22.0 0.2309 0.0640 0.4765 0.0249 5.0560 404 

23.0 0.2304 0.0646 0.4759 0.0260 4.9833 369 

24.0 0.2300 0.0650 0.4754 0.0272 4.9263 338 

25.0 0.2296 0.0651 0.4750 0.0284 4.8853 310 

Table C.2 – Decidability of the ‘LEI-a’ data set with various centre wavelengths using just one 
filter, with sigmaOnF of  0.5 with a template size of 20x240,  and 3 shifts. 

 
λmin µs σs µd σd d` DOF 
2.0 0.3514 0.0502 0.4856 0.0061 3.7525 6721 

3.0 0.3278 0.0522 0.4847 0.0070 4.2151 5042 

4.0 0.3103 0.0534 0.4842 0.0081 4.5479 3818 

5.0 0.2966 0.0543 0.4836 0.0092 4.8023 2965 

6.0 0.2866 0.0554 0.4831 0.0101 4.9345 2437 

7.0 0.2777 0.0558 0.4825 0.0111 5.0946 2016 

8.0 0.2708 0.0565 0.4820 0.0122 5.1697 1689 

9.0 0.2647 0.0568 0.4813 0.0132 5.2570 1443 

10.0 0.2596 0.0572 0.4810 0.0145 5.3077 1193 

11.0 0.2549 0.0574 0.4804 0.0155 5.3632 1033 

12.0 0.2514 0.0572 0.4799 0.0168 5.4180 880 
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13.0 0.2485 0.0575 0.4794 0.0181 5.4138 759 

14.0 0.2461 0.0579 0.4790 0.0195 5.3884 657 

15.0 0.2442 0.0588 0.4785 0.0208 5.3115 576 

16.0 0.2422 0.0592 0.4781 0.0222 5.2713 504 

17.0 0.2409 0.0597 0.4776 0.0236 5.2153 446 

18.0 0.2400 0.0603 0.4767 0.0251 5.1334 396 

19.0 0.2390 0.0612 0.4765 0.0266 5.0355 351 

20.0 0.2382 0.0622 0.4760 0.0281 4.9283 316 

21.0 0.2380 0.0627 0.4755 0.0296 4.8452 285 

22.0 0.2377 0.0632 0.4748 0.0310 4.7623 259 

23.0 0.2378 0.0636 0.4745 0.0326 4.6827 235 

24.0 0.2383 0.0643 0.4740 0.0340 4.5857 216 

25.0 0.2383 0.0651 0.4734 0.0355 4.4823 198 

Table C.3 - Decidability of the ‘LEI-a’ data set with various centre wavelengths using just one 
filter, with sigmaOnF of  0.3 with a template size of 20x240,  and 3 shifts. 

 
 
λmin µs σs µd σd d` DOF 
4.0 0.4301 0.0358 0.4785 0.0066 1.8787 5776 

8.0 0.3453 0.0431 0.4731 0.0097 4.0938 2647 

12.0 0.3109 0.0399 0.4759 0.0093 5.6981 2914 

13.0 0.3053 0.0399 0.4750 0.0099 5.8397 2550 

14.0 0.3006 0.0398 0.4742 0.0106 5.9642 2235 

15.0 0.2966 0.0396 0.4734 0.0113 6.0674 1962 

16.0 0.2931 0.0396 0.4725 0.0120 6.1344 1723 

17.0 0.2903 0.0395 0.4715 0.0128 6.1736 1518 

18.0 0.2877 0.0394 0.4705 0.0136 6.1987 1342 

19.0 0.2853 0.0396 0.4694 0.0145 6.1748 1186 

20.0 0.2832 0.0399 0.4683 0.0154 6.1206 1045 

21.0 0.2812 0.0401 0.4671 0.0164 6.0660 925 

Table C.4 – Different filter parameters using ‘CASIA-a’ with one filter with sigmaonf of  0.5, 
template size 20x240, 8 shifts L & R 

 
 
 
#Shifts 
L&R 

µs σs µd σd d` DOF 

0 0.3047 0.0914 0.4992 0.0184 2.9489 738 
1 0.2654 0.0706 0.4918 0.0173 4.4019 835 
2 0.2511 0.0608 0.4856 0.0153 5.2860 1060 
3 0.2487 0.0589 0.4810 0.0140 5.4292 1272 
4 0.2487 0.0589 0.4777 0.0132 5.3679 1427 
5 0.2487 0.0589 0.4750 0.0128 5.3148 1533 
6 0.2487 0.0589 0.4730 0.0123 5.2750 1640 
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7 0.2487 0.0589 0.4716 0.0120 5.2479 1739 
8 0.2487 0.0589 0.4705 0.0117 5.2276 1817 
9 0.2487 0.0589 0.4697 0.0116 5.2090 1851 
10 0.2487 0.0589 0.4690 0.0115 5.1933 1879 

Table C.5 – Effect of shifts with the ‘LEI-a’ data set. 

 
#Shifts 
L&R 

µs σs µd σd d` DOF 

0 0.3602 0.0731 0.4993 0.0153 2.6345 1061 
1 0.3352 0.0611 0.4930 0.0142 3.5576 1240 
2 0.3213 0.0520 0.4888 0.0128 4.4253 1524 
3 0.3184 0.0502 0.4849 0.0112 4.5780 1991 
4 0.3150 0.0431 0.4828 0.0108 5.3473 2152 
5 0.3145 0.0427 0.4803 0.0099 5.3494 2547 
6 0.3134 0.0403 0.4793 0.0096 5.6652 2684 
7 0.3133 0.0399 0.4784 0.0094 5.6959 2824 
8 0.3130 0.0397 0.4771 0.0091 5.7043 2989 
9 0.3130 0.0397 0.4713 0.0090 5.4994 3076 
10 0.3130 0.0397 0.4757 0.0089 5.6607 3124 

Table C.6 – Effect of shifts with the ‘CASIA-a’ data set. 
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