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Abstract

Images contain step edges, line features and many fea-
ture types that are somewhere between the two. Tradi-
tional gradient based edge operators are tuned to detect
step edges, and hence are unable to properly detect and
localize other feature types. The Phase Congruency detec-
tor is used as a tool to identify the different feature types
found in images. It is shown that there is a continuum of
feature types between step edges and lines, and that most
images have a broad distribution of all these feature types.
It is concluded that in typical images gradient based oper-
ators detect and localize only a small fraction of features
correctly.

1. Introduction

In general the edge detection literature has concentrated
on the detection of step edges. The principal criteria being
usually the good detection and localization of step features
in the presence of noise. This is typified by the work of
Sobel [18], Marr and Hildreth [12], Canny [3, 4], and many
others. A very limited amount of work has been done on
the detection of other kinds of features. Some exceptions to
this are the line detection work of Canny [3], the detection
of peaks and roofs by Perona and Malik [17], the detection
of steps and bars by Wang and Jenkin [20], and the catalog
of feature types developed by Aw, Owens and Ross [1, 2].

The emphasis on the detection of step edges is mis-
placed. Images contain a wide variety of edge types, many
of which are somewhere between a step and a line. This
paper shows that one can describe a continuum of feature
types between step edges and lines, and that most images
have a broad distribution of all these feature types. The
emphasis of computer vision research on the detection of
step edges has resulted in edge detectors that can fail to
find, and/or incorrectly localize, valid features that are rec-
ognized by the human eye.
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Figure 1. Fourier series of square and triangular
waveforms, and sum of the first four terms.

2. What isa feature?

The classical approach to edge detection has been to
think of edges as being points of high intensity gradient.
Rather than think of features in differential terms an alter-
native approach is to think of features in the frequency do-
main. Image profiles can be thought of as being formed by
a Fourier series as shown in Figure 1.

Notice how the Fourier components are all in phase at
the point of the step in the square wave, and at the peaks
and troughs of the triangular wave. Congruency of phase
at any angle produces a clearly perceived feature. We can
generalize our Fourier Series expression to generate a wide
range of waveforms with the equation
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where ¢ is the phase offset defining the angle at which phase



congruency occurs at features, and p is the exponent that
describes the rate of amplitude decay with frequency in the
series.

Figure 2 shows three gratings constructed using equa-
tion 1 for amplitude decay exponents of 0.5, 1, and 1.5. In
each grating ¢, the offset at which congruence of phase oc-
curs, is varied from 0 at the top of the grating to 7 at the
bottom. Visually this corresponds to a pattern where we
perceive a step edge at the top changing to a line feature
at the bottom. This interpretation of the feature types re-
mains the same for all three gratings. This indicates that
changing the amplitude decay exponent, while varying the
‘sharpness’ of the features, does not change our visual clas-
sification of feature type of step at the top of each grating
to line at the bottom. This is despite the large variation in
profiles. It would appear that the perceived feature type is
purely a function of the angle at which phase congruence
occurs.

A grating of this kind reveals the limitations of gradient
based edge detectors. Figure 3 shows the response of the
Canny detector. At the top of the grating pattern, where
the feature is a pure step edge, one gets a single response.
However, at all other points we obtain a double response,
one on each side of the feature point. The Canny detec-
tor marks points of maximal intensity gradient (as it was
designed to do). This example shows that points of maxi-
mal gradient do not necessarily correspond to the locations
where we perceive features.

3. The Phase Congruency detector

So, what is a feature? Rather than assume a feature is
a point of maximal intensity gradient, the Local Energy
Model postulates that features are perceived at points in
an image where the Fourier components are maximally in
phase.

This model was developed by Morrone et al. [15]
and Morrone and Owens [14]. Other work on this
model of feature perception can be found in Morrone and
Burr [13], Owens et al. [16], Venkatesh and Owens [19],
and Kovesi [6, 7, 8, 10, 11]. The work of Morrone and
Burr [13] has shown that this model successfully explains a
number of psychophysical effects in human feature percep-
tion.

The measurement of phase congruency at a point in a sig-
nal can be seen geometrically in Figure 4. The local Fourier
components at a location x in the signal will each have an
amplitude A, (z) and a phase angle ¢, (x). Figure 4 plots
these local Fourier components as complex vectors adding
head to tail. The sum of these components projected onto
the real axis represents F'(x), the original signal. The mag-
nitude of the vector from the origin to the end point is the
Local Energy, |E(z)|.
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Figure 2. Interpolation of a step feature to a line
feature by continuously varying the angle of con-
gruence of phase from 0 at the top to 7 at the
bottom. Three amplitude decay exponents, 0.5,
1.0 and 1.5 are shown in subplots (a), (b) and (c)
respectively. Profiles of the gratings correspond-
ing to congruence of phase at 0, ¢, 3 and 3 are
shown on the right.

Figure 3. Raw Canny edge strength response on
the grating shown in Figure 2(b).
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Figure 4. Polar diagram showing the Fourier
components at a location in the signal plotted
head to tail. The weighted mean phase angle
is given by ¢(z). The noise circle represents the
level of E(x) one can expect just from the noise
in the signal.
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The measure of phase congruency developed by Mor-

rone et al. [15] is
|E ()]
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Under this definition phase congruency is the ratio of | E(z)|
to the overall path length taken by the local Fourier compo-
nents in reaching the end point. If all the Fourier compo-
nents are in phase all the complex vectors would be aligned
and the ratio of |E(x)|/ ", Ay, (x) would be one. If there
is no coherence of phase the ratio falls to a minimum of 0.
Phase congruency provides a measure that is independent
of the overall magnitude of the signal making it invariant
to variations in image illumination and/or contrast. Fixed
threshold values of feature significance can then be used
over wide classes of images.

It can be shown that this measure of phase congruency
is a function of the cosine of the deviation of each phase
component from the mean
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This measure of phase congruency does not provide good
localization as it is a function of the cosine of the phase
deviation, it is also sensitive to noise. Kovesi [8, 10]
developed a modified measure consisting of the cosine
minus the magnitude of the sine of the phase deviation;
this produces a more localized response. This new measure
also incorporates noise compensation:
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The term W(x) is a factor that weights for frequency
spread (congruency over many frequencies is more signif-
icant than congruency over a few frequencies). A small
constant, ¢ is incorporated to avoid division by zero. Only
energy values that exceed 7', the estimated noise influence,
are counted in the result. The symbols | | denote that
the enclosed quantity is equal to itself when its value is
positive, and zero otherwise.

In practice local frequency information is obtained via
banks of filters in quadrature tuned to different spatial fre-
guencies, rather than via the Fourier transform. The cur-
rent implementation uses oriented 2D Log Gabor filters [5].
These filters allow arbitrarily large bandwidth filters to be
constructed while still maintaining a zero DC component in
the even-symmetric filter. For details of this phase congru-
ency measure and its implementation see [10, 11, 9].

4. What featuretypes do images contain?

Having a feature detector that finds features at all an-
gles of phase congruence allows us to interrogate images
to determine what feature types are present, and their rel-
ative frequency. As a by-product of the phase congruency
calculation one can record the weighted mean phase angle,
¢(x) at each point in the image. It should be noted that
the weighted mean phase angle will vary with orientation at
each image point. Here | have chosen to record the mean
phase angle corresponding to the orientation having maxi-
mum local energy.

The weighted mean phase angle will lie in the range —
to . As one moves around the phase circle an angle of
0 indicates an upward going step, 7/2 indicates a bright
line feature, 7 indicates a downward going step, and 37 /2
indicates a dark line feature.

Given that it makes no sense to differentiate between up-
ward and downward going steps the phase data is “folded’
back on itself mapping angles greater than 7r/2 and less than
—7/2 back into the range £7/2. While one can sensibly
differentiate between bright and dark line features here |
have chosen not to make a distinction between the two. Ac-
cordingly the phase data is further ‘folded’ to map angles in
the range 0 to — /2 back into the range 0 to 7 /2. This sim-
plifies the range of feature types to a scale that varies from
‘step’ through “step/line’ to finally ‘line’.

Figure 5 shows the output of the phase congruency de-
tector on the test grating along with the feature classification
determined by the weighted mean phase angle at the feature
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Figure 5.

(a) Output of the phase congruency operator on
the grating shown in Figure 2(b); compare this to
Figure 3.

(b) Feature classification given by weighted
mean phase angle.

point.

Even on a simple idealized ‘blocks world’ type of graph-
ics image one finds a very rich range of feature types
present. Figure 6 shows the raw phase congruency output,
the Canny edge strength, the feature classification, and a
histogram of feature type occurrence. Note the doubled re-
sponse of the Canny operator on the sphere and how it gets
‘lost’ at some points on the torus. The occlusion boundaries
of curved surfaces typically produce hybrid features that are
somewhere between a step and a line; two such sections
through the image are shown. At these points a gradient
based operator will produce a double response at the points
of high gradient that occur on each side of the feature; one
or both of these responses will be incorrectly localized.

Figures 7 and 8 show a similar set of results on two more
natural images. The histograms indicate that in each case
the distribution of feature types present is very broad with a
bias towards a higher frequency of step-like features within
the images. MATLAB code for the calculation of phase
congruency and feature classification is available for those
wishing to replicate the results presented here [9].

5. Conclusion

This paper has argued that it is useful to think of fea-
tures in terms of their Fourier components, rather than in
terms of intensity gradients. This allows us to describe a
wide range of feature types within the framework of a single
model. Features are assumed to lie at points of high phase
congruency, and the angle at which the congruency occurs
describes the feature type. Experiments indicate that im-
ages contain feature types of all phase angles, with a broad
distribution. Accordingly it can be concluded that gradient

based operators, which look for points of maximum inten-
sity gradient, will fail to correctly detect and localize a large
proportion of features within images. Attempts at produc-
ing sub-pixel localization of features with gradient based
detectors are, literally, misplaced.
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Figure 6. Features on a synthetic blocks world image.
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Figure 7. Features on a building image.




)

Phase Congruency edge map

— step
— - steplline
line

:

/Y

JUIE
i
J“‘é%\?/ﬁ /

i
o

-,
.

[

VT T RS UPSRRE N LSS S, s B,

z

o N NSRS

R
2 a\‘\
- SR

e
B

05

phase angle

Histogram of feature type occurrence

Figure 8. Features on Lena.
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