
Fast Almost-Gaussian Filtering
Peter Kovesi

Centre for Exploration Targeting
School of Earth and Environment

The University of Western Australia
35 Stirling Highway
Crawley WA 6009

Email: peter.kovesi@uwa.edu.au

Abstract—Image averaging can be performed very efficiently
using either separable moving average filters or by using summed
area tables, also known as integral images. Both these methods
allow averaging to be performed at a small fixed cost per pixel,
independent of the averaging filter size. Repeated filtering with
averaging filters can be used to approximate Gaussian filtering.
Thus a good approximation to Gaussian filtering can be achieved
at a fixed cost per pixel independent of filter size. This paper
describes how to determine the averaging filters that one needs
to approximate a Gaussian with a specified standard deviation.
The design of bandpass filters from the difference of Gaussians
is also analysed. It is shown that difference of Gaussian bandpass
filters share some of the attributes of log-Gabor filters in that
they have a relatively symmetric transfer function when viewed
on a logarithmic frequency scale and can be constructed with
large bandwidths.

Index Terms—Gaussian smoothing; Difference of Gaussian
filtering;

I. INTRODUCTION

Gaussian smoothing is a fundamental process that is used
in almost every computer vision application. It forms the
cornerstone of scale-space theory [1], [2], [3], [4], [5]. With
the increasing resolution of images there is an interest in
minimising Gaussian filtering costs. In addition, with higher
resolution images one is also often wanting to use Gaussian
filters with correspondingly larger standard deviations. Various
techniques can be used to implement Gaussian filtering effi-
ciently, these include exploiting the separability and symmetry
of the Gaussian as done by Canny [6], or approximating the
Gaussian using recursive infinite impulse response filters, as
investigated by by Canny [6], Deriche [7], and Young and van
Vliet [8]. Haddad and Akansu [9] employed Binomial filters
to achieve fast near–Gaussian filtering. Image pyramids can
also be used to efficiently generate multiple smoothings of
an image. The use of Gaussian pyramids and the differences
between layers of Gaussian pyramids to produce Laplacian
pyramids was introduced by Burt and Adelson [10]. Gaussian
and Laplacian pyramids have since been widely used for many
applications in computer vision. More recently attention has
been directed at the efficient implementation of anisotropic
Gaussian filtering [11].

Of all the techniques mentioned above only the approaches
based on recursive IIR filters are capable of achieving filtering
at a fixed cost per pixel independent of the Gaussian size. This

paper describes how the fixed low cost of averaging achieved
through separable moving average filters, or via summed area
tables, can be exploited to achieve a good approximation
to Gaussian filtering also at a small fixed cost per pixel,
independent of filter size.

Summed area tables were devised by Crow in 1984 [12] but
only recently introduced to the computer vision community by
Viola and Jones [13]. A summed area table, or integral image,
can be generated by computing the cumulative sums along the
rows of an image and then computing the cumulative sums
down the columns. Thus the value at any point (x, y) in the
integral image is the sum of all the image pixels above and to
the left of (x, y), inclusive.

Having computed an integral image, S, the sum of all the
image pixels within an arbitrary rectangle, with vertices a, b,
c and d as shown in Figure 1, can be computed as follows

Σabcd = S(xc, yc)− S(xb, yb)− S(xd, yd) + S(xa, ya) .

Fig. 1. Computing the sum of pixel values within a rectangular area using
an integral image.

If we then divide by the number of pixels in the rect-
angle we have an averaging filter. Two additions per pixel
are required to compute the integral image, and then three
additions/subtractions and a division are needed per pixel to
achieve the averaging. The computational cost of this process
is likely to be dominated by the cost of the memory accesses
rather than the arithmetic operations.

One can use combinations of these averaging/box filters to
construct Haar like filters and to form crude approximations of
first and second derivative Gaussian filters. This was exploited
by Bay et al. with their SURF feature detector/descriptor [14].



However, one need not constrain one’s thinking to the use of
crude box filters. The purpose of this paper is to show that high
quality approximations to ideal filter shapes can be obtained
via integral images at very little extra computational cost.

Repeated filtering with averaging filters can be used to
approximate Gaussian filtering. Three repeated averagings
achieve a passable approximation to a Gaussian and beyond
four repeated averagings the approximation becomes very
good. Note that if the result is to be differentiated to obtain
first or second derivatives at least five filterings should be used,
and perhaps even six. This is because the act of differentiation
has the effect of ‘rolling back’ the smoothing induced by the
averaging. If five filterings are used the total computational
cost of the approximated Gaussian smoothing is 25 additions
and 5 division operations per pixel. In principal the 5 division
operations could be consolidated to a single division at the
very end, however there is a risk of numerical overflow on the
intermediate integral images if this is done.

Consider the crude approximation to a Hessian filter as
used by the SURF feature detector shown in Figure 2. Simple
approximations of the second order partial derivatives are ob-
tained using ten box filterings. This requires 2 additions/pixel
to compute the integral image followed by 30 additions and
10 divisions/pixel to evaluate the ten box filters. However,
at almost the same computational cost, one can compute a
high quality approximation to a Hessian filter by performing
5 recursive averagings to obtain a Gaussian smoothing of the
image and then performing discrete differentiations in the x
and y directions to obtain the partial derivatives.

An alternative to the use of integral images is to exploit
the separability of the averaging filter and perform repeated
moving average filtering on the rows and columns of the
image. If some of the division operations on the repeated
averaging passes are consolidated the computational cost can
be made similar to that of using integral images.

Fig. 2. Box filter approximations of Gaussian second order partial derivatives
used by Bay et al. [14].

II. DETERMINING THE AVERAGING FILTERS NEEDED TO
APPROXIMATE A SPECIFIC GAUSSIAN

In order to exploit the efficiency of achieving approximate
Gaussian filtering via multiple averagings one needs a way of
determining the specific averaging filters required to approxi-
mate a Gaussian of a desired standard deviation.

The standard deviation of an averaging filter of width w is

σav =

√
w2 − 1

12
. (1)

If we perform n averagings with the same filter the variances
of the filters add to produce an overall filtering effect equiva-
lent to a standard deviation of

σnav =

√
nw2 − n

12
. (2)

From this we can compute the ideal width of the averaging
filter that one should use to achieve filtering that is equivalent
to that obtained with a Gaussian of standard deviation σ

wideal =

√
12σ2

n
+ 1. (3)

In general this will be some real valued quantity. However we
can only use averaging filters of integer width and, in addition,
we want to use filters of odd width so that there is always a
centre pixel that the filtering result can be assigned to.

The solution adopted is to use two sizes of filter. One having
width equal to the first odd integer that is less than wideal, call
this wl, and the other being being the first odd integer greater
than wideal, call this wu. Of course wu = wl + 2. We then
assume we will achieve our filtering by using m passes with a
filter of width wl followed by (n−m) passes with a filter of
width wu, where 0 ≤ m ≤ n. Again, noting that variances of
the filters add, the standard deviation of the equivalent filter
obtained from this process will be

σ =

√
mw2

l + (n−m)w2
u − n

12

=

√
mw2

l + (n−m)(wl + 2)2 − n
12

(4)

Thus, given σ, n and wl we can solve for the value of m as

m =
12σ2 − nw2

l − 4nwl − 3n
−4wl − 4

. (5)

Note that the value from the expression above has to be
rounded so that m is an integer.

In summary, given σ and n, the overall process is:
• Use equation 3 to determine wideal and hence wl and wu.
• Use equation 5 to determine m.
• Apply an averaging filter of width wl m times.
• Apply an averaging filter of width wu (n−m) times.
The rounding of m to an integer will introduce a small

error in the effective standard deviation achieved. The larger
the value of n the smaller this error will be. For example for
n = 5, wl = 3 and wu = 5 if m = 5 the standard deviation
will be

σm=5 =

√
5× 32 + 0× 52 − 5

12
= 1.8257

The next increment in sigma will be obtained with m = 4

σm=4 =

√
4× 32 + 1× 52 − 5

12
= 2.1602

The difference between these two values is 0.3345. For smaller
values of m, and for larger values of wl, the spacing between
adjacent filter standard deviations reduces gradually. Hence



one can expect the accuracy of the achieved σ to be at least
as good as ±0.1673 for n = 5.

While the accuracy of the standard deviation achieved can
be improved by increasing n it is worth keeping n as small as
is practical to reduce the edge effects in the final filtered result.
With each averaging filter pass the edge effects propagate
further into the image. If we define the ‘radius’ of an averaging
filter as being (width-1)/2, the width of the edge affected
boundary will be n× radius. For n = 5 this boundary width
will be slightly greater than the 3σ that is typically allowed
for in Gaussian smoothing. So, overall it is worth keeping the
number of passes small, certainly no more than 6.

200 150 100 50 0 50 100 150 200
 

 
Gaussian
10 averaging passes
5 averaging passes
3 averaging passes

Fig. 3. Approximating a Gaussian with standard deviation of 40 using 3,
5 and 10 averaging passes. Actual standard deviation achieved with 5 passes
was 39.983.

III. DESIGNING GAUSSIAN LOWPASS, HIGHPASS AND
BANDPASS FILTERS

Having the ability to generate equivalent Gaussian filters at
arbitrary standard deviations allows one to design filters with
specific properties in the frequency domain.

The Fourier transform of a normalized Gaussian is a unit
height Gaussian.

Fx
[

1√
2πσ2

e
−x2

2σ2

]
(ω) = e−2π2σ2w2

(6)

Thus the standard deviations of the Gaussians in the spatial
and frequency domains are related as follows:

σx =
1

2πσω
. (7)

Filtering an image with a Gaussian in the spatial domain cor-
responds to lowpass filtering. Subtracting a lowpassed image
from the original image corresponds to highpass filtering. For
symmetry one may prefer to define the cutoff frequency of the
filter as being the point of half maximum amplitude rather than
half maximum power. Using this definition one would use the
same Gaussian filter to generate either a lowpass or highpass

filtering for a given cutoff frequency. In contrast, depending
on whether one was performing highpass or lowpass filtering,
different Gaussians would be needed if one was to use the
traditional factor of

√
1/2 of the maximum to define the

cutoff.
At half amplitude the cutoff frequency corresponds to

ωc = σω
√

2 ln(2) . (8)

Thus, given a desired ωc, one can compute the appropriate
value of σx to use when performing the Gaussian smoothing
in the spatial domain

σx =

√
2 ln(2)
2πωc

. (9)

A. Difference of Gaussians Bandpass Filters

The difference of two Gaussians can be used to form a
bandpass filter. Traditionally differences of Gaussians have
been thought of in terms of approximating the Laplacian of
Gaussian. A ratio of standard deviations of 1.6 produces a
good approximation to the Laplacian [15], [16]. The use of
differences between layers of Gaussian pyramids to produce
Laplacian pyramids, as introduced by Burt and Adelson [10],
have become widely used for many applications in computer
vision. A recent example is Lowe’s use of differences between
levels of a Gaussian pyramid to generate a scale space for the
detection of keypoint features [17].

However, there are many examples in the literature of
‘Laplacian’ pyramids being formed from the differences of
Gaussians that differ considerably from the ideal standard
deviation ratio of 1.6. Indeed, Burt and Adelson acknowledge
this in their paper and only describe their Gaussian difference
images as being similar to the Laplacian operator. Lowe uses
Gaussians that differ in scale by 21/3 ' 1.26 [17]. The use
of these ‘non-Laplacian’ pyramids generally does not matter
because usually all that is required is some kind of bandpass
filter, not the Laplacian of Gaussian.

Thus, rather than just thinking of differences of Gaussians
as being a way to approximate the second derivative of a
Gaussian it is probably more useful think of them as forming
a family of bandpass filters. They form a useful alternative to
the use of Gabor filters in that they are guaranteed to have
0 DC component and can be constructed with much larger
bandwidths.

Difference of Gaussian bandpass filters can be designed
in the frequency domain as being the difference of two
unit height Gaussians. The spatial equivalent of these unit
height Gaussians defined in the frequency domain can then
be determined using equation 7. In many applications we are
interested in forming geometrically scaled filters where the
bandwidth is proportional to the centre frequency. This can be
achieved if we specify, in the frequency domain, the standard
deviation of the broader Gaussian to be some constant, k, times
the smaller one, giving

Hbp = e
−w2

2k2σ2
ω − e

−w2

2σ2
ω . (10)



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

 

 
Gaussian 1
Gaussian 2
Difference of Gaussians

10 4 10 3 10 2 10 1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

 

 
Gaussian 1
Gaussian 2
Difference of Gaussians

Fig. 4. Using the difference of two unit height Gaussians to construct a
bandpass filter in the frequency domain. The transfer function of the filter is
shown on linear and logarithmic frequency scales. The center frequency is
0.1 and the ratio of standard deviations is 3.

As seen in Figure 4 the transfer function of the bandpass
filter produced by a difference of Gaussians has a long tail
towards the high frequency end. The extent of the tail depends
on the value of k. On a logarithmic frequency scale the shape
is more symmetric. In this case, where k = 3, the shape is not
too dissimilar to the transfer function of a log-Gabor filter [18],
[19], which has a Gaussian transfer function when viewed on
a logarithmic frequency scale.

If one defines the centre frequency of this filter as being the
point where it peaks this can be solved for as being the point
where Hbp has zero slope

ωo = 2σω

√
ln(k)

1− 1
k2

(11)

Alternatively, given a desired centre frequency and a value
of k one can solve for the necessary standard deviations as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency

transfer function

 

 
Difference of Gaussians
log Gabor

30 20 10 0 10 20 30

0.05

0

0.05

0.1

0.15

0.2

pixels

filter shape

 

 
Difference of Gaussians
log Gabor

Fig. 5. Transfer function and filter shape of difference of Gaussian filter and
log-Gabor filter. The difference of Gaussian filter was constructed with a ratio
of standard deviations of 3. The log-Gabor filter was constructed to have a
similar bandwidth to allow comparison. Both have a centre frequency of 0.05
(wavelength 20 pixels) and a bandwidth of approximately 1.5 octaves.

follows

σl =
ωo
2

√
1− 1

k2

ln(k)
(12)

σu = kσl (13)

The value of the transfer function at the peak will be

M = e
−ω2

o
2k2σ2

l − e
−ω2

o
2σ2
l . (14)

If required, the transfer function of the bandpass filter can then
be renormalised back to unit height by scaling the Gaussians
by 1/M .

The value of k controls the bandwidth of the filter. When
measured in terms of the ratio of the upper cutoff frequency
to the lower cutoff the bandwidth will be fixed for a given
value of k for any value of centre frequency.

The relationship between k and the bandwidth cutoff ratio is
non-linear and does not lend itself readily to analytic solution.



Figure 6 plots a numerically evaluated curve showing the
relationship between k and the filter bandwidth. There is a
lower limit of the bandwidth of a difference of Gaussians
filter. As the value of k tends towards 1, and the difference of
Gaussians collapse towards 0, the bandwidth cutoff ratio tends
to about 2.3. Note that, unlike the choice made in Section III
for defining lowpass and highpass filters, the cutoff frequencies
are defined here by the points on the transfer function that are
at half maximum power.

The relationship between k and bandwidth ratio, B can be
approximated by a fitted polynomial

k = c1B
2 + c2B + c3 (15)

where c1 = −0.8855, c2 = 8.1259 and c3 = −12.8646.

1 1.5 2 2.5 3 3.5 4 4.5 5
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Ba
nd

w
id

th
 c

ut
of

f r
at

io

k

Fig. 6. Plot of filter bandwidth cutoff ratio vs ratio of Gaussian standard
deviations k.

Given a desired centre frequency ωo and bandwidth ratio,
and hence k, one can compute the standard deviations of
the constructing Gaussians in the frequency domain using
Equations 12 and 13. These can then be converted to standard
deviations of the Gaussian filters to apply in the spatial domain
using Equation 7. Equation 14 can be used to determine the
scaling of the Gaussians needed to ensure a unit height of the
filter’s transfer function.

It is interesting to note that the bandwidth of a difference
of Gaussian filter is limited to frequency ratios of about 2.4
and upwards. Thus they are not appropriate for applications
requiring narrow bandpass filters. This is in contrast to the
Gabor filter which is limited to a maximum bandwidth ratio of
about 2. Larger bandwidth Gabor filters cannot be constructed
because the DC value can no longer be held at 0 [20]. On
the other hand log-Gabor filters [18], [19] can be constructed
with arbitrary bandwidth. It is for this reason the comparison
with a log-Gabor filter shown in Figure 5 is presented. For
applications requiring large bandwidth filters difference of
Gaussian filters appear to share many of the attributes of
log-Gabor filters. The transfer function, when viewed on
a logarithmic frequency scale, is relatively symmetric and
arbitrarily large bandwidths can be constructed. Difference of

Gaussians have the convenience of being applied to the image
in the spatial domain whereas log-Gabor filters can only be
readily applied if the image has first been transformed to the
frequency domain.

IV. CONCLUSION

This paper shows that there is no computational justification
for using crude box filters to approximate Gaussians and their
derivatives in image processing. High quality approximations
can be obtained at negligible cost by repeated averagings.
The appropriate averaging filters required to closely achieve a
desired Gaussian standard deviation can be determined readily.

It has also been argued that is is more useful to think
of differences of Gaussians as bandpass filters rather than
as approximations of the Laplacian. They are useful for
applications requiring large bandwidth filters and thus provide
a useful complementary alternative to Gabor filters. Difference
of Gaussian bandpass filters can be implemented efficiently
and have the advantage over log-Gabor filters in that they can
be applied directly in the spatial domain.

REFERENCES

[1] J. J. Koenderink, “The structure of images,” Biological Cybernetics,
vol. 50, no. 5, pp. 363–370, August 1984.

[2] T. Lindeberg, “Scale-space for discrete signals,” IEEE Transactions
PAMI, vol. 12, no. 3, pp. 234–254, 1990.

[3] ——, Scale-Space Theory in Computer Vision. Kluwer, 1994.
[4] ——, “Feature detection with automatic scale selection,” International

Journal of Computer Vision, vol. 30, no. 2, pp. 79–116, 1998.
[5] A. Witkin, D. Terzopoulos, and M. Kass, “Signal matching through scale

space,” International Journal of Computer Vision, pp. 133–144, 1987.
[6] J. F. Canny, “Finding edges and lines in images,” MIT. AI Lab., Tech.

Rep. TR-720, 1983, masters Thesis.
[7] R. Deriche, “Fast algorithms for low-level vision,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 12, pp. 78–87, 1990.
[8] I. T. Young and L. J. van Vliet, “Recursive implementation of the

gaussian filter,” Signal Processing, vol. 44, pp. 139–151, 1995.
[9] R. A. Haddad and A. N.Akansu, “A class of fast gaussian binomial

filters for speech and image processing,” IEEE Transactions on Signal
Processing, vol. 39, no. 3, pp. 723–727, 1991.

[10] P. Burt and T. Adelson, “The Laplacian pyramid as a compact image
code,” IEEE Trans. Communications, vol. 9, no. 4, pp. 532–540, 1983.

[11] J.-M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, “Fast
anisotropic gauss filtering,” IEEE Transactions on Image Processing,
vol. 12, no. 8, pp. 938–943, 2003.

[12] F. Crow, “Summed-area tables for texture mapping,” in SIGGRAPH ’84:
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques, 1984, pp. 207–212.

[13] P. Viola and M. Jones, “Robust real-time object detection,” in Second
International Workshop on Statistical and Computational Theories of
Vision Modeling, Learning, Computing, and Sampling, 2001, vancouver.

[14] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up
Robust Features,” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[15] D. Marr, Vision. Freeman: San Francisco, 1982.
[16] D. Marr and E. C. Hildreth, “Theory of edge detection,” Proceedings of

the Royal Society, London B, vol. 207, pp. 187–217, 1980.
[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[18] D. J. Field, “Relations between the statistics of natural images and the
response properties of cortical cells,” Journal of The Optical Society of
America A, vol. 4, no. 12, pp. 2379–2394, 1987.

[19] ——, “What the statistics of natural images tell us about visual coding,”
in SPIE Vol 1077: Human Vision, Visual Procsssing and Digital Display,
1989, pp. 269–276.

[20] P. Kovesi, “Image features from phase congruency,” Videre, vol. 1, no. 3,
pp. 1–26, 1999.


