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Abstract

In recent years wavelet shrinkage denoising has become
the method of choice for the denoising of images. However,
despite much research a number of questions remain.
- Which of the many wavelets that exist should one use?
- How should the threshold be set? and
- How are features in the image affected by the thresholding
operation?
This paper explores these issues and argues for the use
of non-orthogonal, complex valued, log-Gabor wavelets,
rather than the more usual orthogonal or bi-orthogonal
wavelets. Thresholding of wavelet responses in the complex
domain allows one to ensure that perceptually important
phase information in the image is not corrupted. It is also
shown how appropriate threshold values can be determined
automatically from the statistics of the wavelet responses to
the image.

1. Introduction

Denoising of images is typically done with the following
process: The image is transformed into some domain where
the noise component is more easily identi£ed, a threshold-
ing operation is then applied to remove the noise, and £nally
the transformation is inverted to reconstruct a (hopefully)
noise-free image.

The wavelet transform has proved to be very successful
in making signal and noise components of the signal dis-
tinct. As wavelets have compact support the wavelet co-
ef£cients resulting from the signal are localised, whereas
the coef£cients resulting from noise in the signal are dis-
tributed. Thus the energy from the signal is directed into a
limited number of coef£cients which ‘stand out’ from the
noise. Wavelet shrinkage denoising then consists of identi-
fying the magnitude of wavelet coef£cients one can expect
from the noise (the threshold), and then shrinking the mag-
nitudes of all the coef£cients by this amount. What remains

of the coef£cients should be valid signal data, and the trans-
form can then be inverted to reconstruct an estimate of the
signal [4, 3, 1].

Wavelet denoising has concentrated on the use of or-
thogonal or bi-orthogonal wavelets because of their recon-
structive qualities. However, no particular wavelet has been
identi£ed as being the ‘best’ for denoising. It is generally
agreed that wavelets having a linear-phase, or near linear-
phase, response are desirable, and this has led to the use of
the ‘symlet’ series of wavelets and bi-orthogonal wavelets.

A problem with wavelet shrinkage denoising is that the
discrete wavelet transform is not translation invariant. If
the signal is displaced by one data point the wavelet coef-
£cients do not simply move by the same amount. They are
completely different because there is no redundancy in the
wavelet representation. Thus, the shape of the reconstructed
signal after wavelet shrinkage and transform inversion will
depend on the translation of the signal - clearly this is not
very satisfactory. To overcome this translation invariant de-
noising has been devised [1]. This involves averaging the
wavelet shrinkage denoising result over all possible transla-
tions of the signal. This produces very pleasing results and
overcomes pseudo-Gibbs phenomena that is often seen in
the basic wavelet shrinkage denoising scheme.

The criteria for quality of the reconstructed noise-free
image has generally been the RMS error - though Donoho
suggests a side condition that the reconstructed (denoised)
signal should be, with high probability, as least as smooth
as the original (noise free) signal.

While the use of the RMS error in reconstructing 1D sig-
nals may be reasonable, the use of the RMS measure for im-
age comparison has been criticised [2, 10]. Almost without
exception images exist solely for the bene£t of the human
visual system. Therefore any metric that is used for evaluat-
ing the quality of image reconstruction must have relevance
to our visual perception system. The RMS error certainly
does not necessarily give a good guide to the perceptual
quality of an image reconstruction. For example, displac-
ing an image a small amount, or offsetting grey levels by



a small amount, will have negligible perceptual effect, but
will induce a large RMS error.

As yet no metric that matches human visual perception
has been devised. However, one quantity that appears to be
very important in the human perception of images is phase.
The classic demonstration of the importance of phase was
devised by Oppenheim and Lim [9]. They took the Fourier
transforms of two images and used the phase information
from one image and the magnitude information of the other
to construct a new, synthetic Fourier transform which was
then back-transformed to produce a new image. The fea-
tures seen in such an image, while somewhat scrambled,
clearly correspond to those in the image from which the
phase data was obtained. Little evidence, if any, from the
other image can be perceived. A demonstration of this is
repeated here in Figure 1.
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Figure 1. When phase information from one
image is combined with magnitude informa-
tion of another it is phase information that
prevails.

While phase is not the only quantity important to our
perception of images it would seem that an important con-
straint that should be satis£ed by any image enhancement
process, such as denoising, is that it should not corrupt the
phase information in an image

2. Phase Preserving Denoising

To be able to preserve the phase data in an image we
have to £rst extract the local phase and amplitude informa-
tion at each point in the image. This can be done by apply-
ing (a discrete implementation of) the continuous wavelet
transform and using wavelets that are in symmetric/anti-
symmetric pairs. Here we follow the approach of Mor-
let, that is, using wavelets based on complex valued Ga-
bor functions - sine and cosine waves, each modulated by a
Gaussian [8]. Using two £lters in quadrature enables one to
calculate the amplitude and phase of the signal for a partic-
ular scale/frequency at a given spatial location.

However, rather than using Gabor £lters we prefer to use
log Gabor functions as suggested by Field [5]; these are £l-
ters having a Gaussian transfer function when viewed on the
logarithmic frequency scale. Log Gabor £lters allow arbi-
trarily large bandwidth £lters to be constructed while still

maintaining a zero DC component in the even-symmetric
£lter. A zero DC value cannot be maintained in Gabor func-
tions for bandwidths over 1 octave. It is of interest to note
that the spatial extent of log Gabor £lters appears to be min-
imized when they are constructed with a bandwidth of ap-
proximately two octaves [7, 6]. This would appear to be op-
timal for denoising as this will minimise the spatial spread
of wavelet response to signal features, and hence concen-
trate as much signal energy as possible into a limited num-
ber of coef£cients.

Figure 2. Even and odd log Gabor wavelets,
each having a bandwidth of two octaves.

Analysis of a signal is done by convolving the signal with
each of the quadrature pairs of wavelets. If we let I denote
the signal and M e

n and Mo
n denote the even-symmetric and

odd-symmetric wavelets at a scale n we can think of the
responses of each quadrature pair of £lters as forming a re-
sponse vector,

[ en(x), on(x) ] = [ I(x) ∗M
e
n, I(x) ∗M

o
n ] .

The values en(x) and on(x) can be thought of as real and
imaginary parts of complex valued frequency component.
The amplitude of the transform at a given wavelet scale is
given by

An(x) =
√

en(x)2 + on(x)2

and the phase is given by

Φn(x) = atan2(on(x), en(x)).

At each point x in a signal we will have an array of these
response vectors, one vector for each scale of £lter. These
response vectors form the basis of our localized representa-
tion of the signal as shown in Figure 3.

In this domain the denoising process consists of de-
termining a noise threshold at each scale and shrinking
the magnitudes of the £lter response vectors appropriately,
while leaving the phase unchanged.

It should be noted that shrinkage of complex-valued
wavelet response vectors is not the same as shrinkage of
real-valued discrete wavelet responses. In the proposed
phase preserving scheme some component of the even £lter
response will always be retained (even if it is very small)
as long as the odd £lter response is such that the total am-
plitude exceeds the noise threshold. This should be com-
pared to the case for real-valued discrete wavelets where
a response will only be retained if the magnitude exceeds
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Figure 3. An array of £lter response vectors
at a point in a signal can be represented as a
series of vectors radiating out from the fre-
quency axis. The amplitude speci£es the
length of each vector and the phase speci£es
its angle. Note that wavelet £lters are scaled
geometrically, hence their centre frequencies
vary accordingly.
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Figure 4. View along the frequency axis il-
lustrating the shrinkage of complex-valued
wavelet response vectors.

the threshold because the shrinkage process is constrained
to operate only on the real axis. Note also that applying
shrinkage only along the real axis will corrupt phase infor-
mation as the imaginary component will be ignored in de-
ciding how much a wavelet component should be shrunk.
It is worth noting that the averaging process in translation-
invariant denoising may achieve a similar result to the pro-
posed phase preserving algorithm.

Having shrunk the complex-valued wavelet response
vectors an estimate of the signal can then be reconstructed
by summing the remaining even-symmetric £lter responses
over all scales and orientations. However, there are some
issues in the reconstruction of the denoised image from the
shrunk response vectors. Complex valued log Gabor £lters
do not form an orthogonal basis set. This means that the sig-
nal can only be reconstructed over the range of frequencies
covered by the £lters, and that the signal can only be recon-
structed up to a scale factor. Thus to achieve satisfactory

reconstruction the design of the wavelet £lter bank must be
such that the transfer functions of all the £lters overlap suf-
£ciently so that their sum results in an even coverage of the
spectrum. In the 2D frequency plane the £lter transfer func-
tions appear as 2D log Gaussians. These can be arranged in
a ‘rosette’ to ensure uniform coverage of the spectrum. Un-
der this arrangement it is dif£cult to have £lters that cover
the very low frequencies in the image. However, perceptu-
ally this does not appear to be very important. Similarly, the
lack of an absolute scale in the reconstructed grey levels is
not important perceptually.

3. Determining the Threshold

The most crucial parameter in the denoising process is
the threshold. While many techniques have been devel-
oped [4, 3] none have proved very satisfactory. Here we
develop an automatic thresholding scheme.

First we must look at the expected response of the £lters
to a pure noise signal. If the signal is purely Gaussian white
noise the positions of the resulting response vectors from a
wavelet quadrature pair of £lters at some scale will form a
2D Gaussian distribution in the complex plane. What we
are interested in is the distribution of the magnitude of the
response vectors. This will be a Rayleigh distribution

R(x) =
x

σ2
g

e
−x2

2σ2
g ,

where σ2
g is the variance of the 2D Gaussian distribution

describing the position of the £lter response vectors.
The mean of the Rayleigh distribution is given by

µr = σg

√

π

2
,

and the variance is

σ2
r =

4− π

2
σ2
g .

The point to note is that only one parameter is required to
describe the distribution; given µr one can determine σr,
and vice-versa. If we can determine the noise response dis-
tribution at each £lter scale we could then set the noise
shrinkage threshold at each scale to be some number of
standard deviations beyond the mean of the distribution

T = µr + kσr ,

where k is typically in the range 2 – 3.
How can we determine the noise amplitude distribution?

The smallest scale £lter has the largest bandwidth, and as
such will give the strongest noise response. Only at feature
points will the response differ from the background noise
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Figure 5. Rayleigh distribution with a mean of
one.

response, but the regions where it will be responding to fea-
tures will be small due to the small spatial extent of the £lter.
Thus the smallest scale wavelet quadrature pair will spend
most of their time only responding to noise.

Thus, the distribution of the amplitude response from the
smallest scale £lter pair across the whole image will be pri-
marily the noise distribution, that is, a Rayleigh distribution
with some contamination as a result of the response of the
£lters to feature points in the image.

We can obtain a robust estimate of the mean of the am-
plitude response of the smallest scale £lter via the median
response. The median of a Rayleigh distribution is the value
x such that

∫ x

0

x

σ2
g

e
−x2

2σg =
1

2

⇒ median = σg
√

−2 ln(1/2) .

Noting that the mean of the Rayleigh distribution is σg
√

π
2

we obtain the expected value of the amplitude response of
the smallest scale £lter (the estimate of the mean)

E(AN ) =
σg

√

π/2

σg
√

−2 ln(1/2)
. median

=
1

2

√

−π

ln(1/2)
. median ,

where N is the index of the smallest scale £lter. Given
that σg =

E(AN )√
π/2

we can then estimate µr and σr for the

noise response for the smallest scale £lter pair, and hence
the shrinkage threshold.

We can estimate the appropriate shrinkage thresholds to
use at the other £lter scales if we make the following ob-
servation: If it is assumed that the noise spectrum is uni-
form then the wavelets will gather energy from the noise as
a function of their bandwidth which, in turn, is a function
of their centre frequency. For 1D signals the amplitude re-
sponse will be proportional to the square root of the £lter

centre frequency. In 2D images the amplitude response will
be directly proportional to the £lter centre frequency.

wavelet amplitude response
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Figure 6. If the noise spectrum is uniform the
response of a wavelet to the noise will be a
function of its bandwidth.

Thus having obtained an estimate of the noise amplitude
distribution for the smallest scale £lter pair we can simply
scale this appropriately to form estimates of the noise am-
plitude distributions at all the other scales. This approach
proves to be very successful in allowing shrinkage thresh-
olds to be set automatically from the statistics of the small-
est scale £lter response over the whole image.

4. Results

Figure 7 shows a synthetic test image with grey values
ranging between 0 and 255. Gaussian white noise with a
standard deviation of 80 grey levels was added to the im-
age. The result of applying the phase preserving denoising
algorithm to the image (using a k value of 2 to set the thresh-
old) is shown along with the result obtained by applying a
standard discrete wavelet denoising scheme (the MATLAB
wdencmp function using the ‘symlet8’ wavelet and a man-
ually derived threshold of 60).

Figure 8 shows the 1D sections at row 150 (out of 256)
on each of the four images shown in Figure 7. Note the
vertical scale for the plot of the phase preserved denoised
image does not match that for the original image. The re-
construction from the complex-valued log Gabor wavelets
cannot cover the very low, and zero frequency, components
of the signal. Also the signal can only be recovered up to
a scale factor. Despite this the shape of the reconstructed
signal is very good. A major part of the success of the
seemingly astonishing reconstruction is due to the fact that
the denoising process is taking place in 2D. The reconstruc-
tion of row 150 in the image makes use of information from
above and below that row. Such a result would not be pos-
sible working solely in 1D.

Figure 9 shows the phase preserving denoising process
applied to a poor quality surveillance image of a hold-up. It
should be noted that video images consist of two interlaced
images. If there is any motion (there was a small amount in
this image) the interlacing will result in ‘tooth comb’ edges
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Figure 7. Denoising of a test image

around objects. To overcome this the individual images that
make up the video frame can be obtained by extracting just
the even, or just the odd, numbered scan lines from the im-
age prior to denoising.

5. Conclusion

We have presented a new denoising algorithm, based
on the decomposition of a signal using complex-valued
wavelets. This algorithm preserves the perceptually im-
portant phase information in the signal. In conjunction
with this a method has been devised to automatically de-
termine the appropriate wavelet shrinkage thresholds from
the statistics of the amplitude response of the smallest scale
£lter pair over the image. The automatic determination of
thresholds overcomes a problem that has plagued wavelet
denoising schemes in the past.

The RMS measure is not always the most appropriate
metric to use in the development of image processing algo-
rithms. Indeed it could be argued that more time should be
spent optimising the choice of the optimisation criteria in
general. For images it would appear that the preservation of
phase data is important, though of course, other factors must
also be important. The denoising algorithm presented here
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Figure 8. Section along row 150 in the test im-
age

does not seek to do any optimisation, it has merely been
constructed so as to satisfy the constraint that phase should
not be corrupted. Given that it satis£es this constraint, it
should be possible to develop it further so that it does in-
corporate some optimisation, say, the minimisation of the
distortion of the signal’s amplitude spectrum. What should
also be investigated is the possible relationship between this
phase preserving algorithm and translation invariant denois-
ing.
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