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Abstract

This paper addresses the problem of deducing the sur-

face shape of an object given just the surface normals.

Many shape measurement algorithms such as shape from

shading and shape from texture only return the surface nor-

mals of an object, often with an ambiguity of π in the surface

tilt. The surface shape has to be inferred from these nor-

mals, typically via some integration process. However, re-

construction through the integration of surface gradients is

sensitive to noise and the choice of integration paths across

the surface. In addition, existing techniques cannot accom-

modate ambiguities in tilt. This paper presents a new ap-

proach to the reconstruction of surfaces from surface nor-

mals using basis functions, referred to here as shapelets.

The surface gradients of the shapelets are correlated with

the gradients of the surface and the correlations summed

to form the reconstruction. This results in a simple recon-

struction process that is very robust to noise. Where there

is an ambiguity of π in the surface tilt, reconstructions of

reduced quality are still possible up to a positive/negative

shape ambiguity. Intriguingly, some form of reconstruction

is also possible using just slant information.

1. Introduction

There are a number computer vision techniques that at-

tempt to determine the surface normals within a scene.

These include shape from shading and its extension, pho-

tometric stereo [4, 11, 12, 17], shape from texture [1, 2,

28, 18, 8, 7], and slant and tilt from differential invari-

ants [15, 9]. Often the surface normals obtained from these

methods are ill-conditioned and subject to noise.

This paper addresses the problem of deducing the sur-

face shape of an object given just the surface normals. The

traditional approach to reconstructing a surface from its sur-

face normals is via integration. The difficulty with this ap-

proach is that it can be very sensitive to noise and there

is the problem of finding appropriate regularization tech-

niques to impose the requirement that the surface gradient

be integrable [3, 14, 30, 31, 22, 23].

Terzopoulos [29] proposes a variational formulation of

the reconstruction process. A concern with this approach is

that in forming an energy function that seeks to minimize

deviation from depth and orientation constraints, and also

minimize surface discontinuity as measured by some thin

plate spline, one produces an expression with gross dimen-

sional inconsistencies. The penalty function that measures

deviation from depth and orientation constraints involves

the addition of distance error squared terms to gradient er-

ror squared terms. The surface stability function involves

terms where the square of the second derivative of the sur-

face is added to the square of the first derivative. Finally

the penalty and surface stability functions are added to pro-

duce the energy function. A number of parameters have to

be supplied which have to attempt to act as unit conversion

factors for these mixed quantities. Another difficulty is that

the iterative energy minimization solution process is slow

to converge. To improve convergence speed Terzopoulos

proposes a multiresolution solution process. Solutions at

coarse scales allow constraints to propagate across the sur-

face more rapidly. Coarse scale solutions are then used as a

starting point for iterative solution at a finer scale. The di-

mensional inconsistency of the energy function means that

the behaviour of the iterative solution process can vary con-

siderably at different scales, further complicating the setting

of parameters. Most schemes involving regularization terms

suffer from these difficulties.

Frankot and Chellappa [10] introduced a very simple and

powerful way of ensuring integrability of a surface as part of

their shape from shading algorithm. The surface gradients

are projected onto a set of integrable basis functions, and the

surface is reconstructed from these. They use the Fourier

basis functions. This is a quick one-step algorithm that is

highly robust to noise. Indeed, it possibly remains one of

the most noise tolerant algorithms to date.

The natural extension of this approach is to use local-



ized wavelet basis functions rather than Fourier ones. Hsieh

et al. [13] employ this in their shape from shading algo-

rithm. Karaçali and Snyder [5, 6] employ a reconstruction

approach based on constructing an orthonormal set of gradi-

ent fields that span a feasible subspace of the gradient space

using wavelets. The measured gradient field is projected

onto the feasible subspace to produce a surface with gra-

dient field closest to the measured gradients. They adapt

wavelet denoising techniques to very successfully reduce

the influence of noise on the reconstruction. A drawback of

this approach is that discontinuities in the surface have to

be deduced and treated specially within the context of the

feasible gradient subspace.

The work presented in this paper follows the approach of

projecting gradients onto basis functions. Where this work

differs is that a redundant set of non-orthogonal basis func-

tions of finite support are used, and the correlation with the

basis functions is formulated with respect to slant and tilt,

rather than in terms of the gradient of the surface with re-

spect to x and y. The advantage of this is that the correlation

measures can be modified to allow for ambiguities in tilt of

π, and even allow for the case where no tilt data is available.

Where there is ambiguity in the tilt data this new approach

allows potential surface shape solutions to be hypothesized

for subsequent verification or rejection.

Many forms of basis functions have been used for im-

age decomposition and reconstruction with various forms of

wavelets being popular in recent years [21]. When the de-

composition is done in terms of a continuous wavelet trans-

form, say using Gabor wavelets, the correlation results cor-

respond to band-passed versions of the image; these can be

summed directly to reconstruct the image. It is an adapta-

tion of this latter approach, applied to surface normals, that

is employed in this paper for the reconstruction of surfaces.

2. Reconstruction from Shapelets

The aim of shape from shading, photometric stereo and

shape from texture is to produce a range image of the scene.

Clearly the range image can be represented as the sum of a

set of basis functions, however we have to determine the set

of the basis functions that make up the range image solely

from the gradient data. This proves not to be too problem-

atic if we make the following observation.

A correlation performed between the gradients of a sig-

nal and the gradients of a basis function can provide infor-

mation equivalent to direct correlation between the signal

and basis function (up to a signal offset) because differen-

tiation is linear. If the values in a range image are dou-

bled (‘doubling’ its shape) so too will the surface gradients.

Thus, if we correlate the surface gradient information with

the gradients of a bank of shapelet basis functions we can

reconstruct the surface shape, up to an offset, by simply

summing the correlation results. The summing of the basis

correlations automatically imposes a continuity constraint

and performs an implicit integration of the surface from its

gradients.

2.1. Choice of Shapelet

Potentially there are many basis functions that could be

used as shapelets1. In designing a bank of shapelet fil-

ters we start by noting that correlating the gradient of one

shapelet filter with the gradient of the signal will correspond

to extracting a band of frequencies from the signal gradient.

The need to reconstruct a surface from correlations between

surface normals and shapelet gradients imposes some con-

straints on the shapelet function. These are:

• The gradient of the shaplet function must satisfy the

admissibility condition of zero mean.

• The shapelet must have minimal ambiguity of shape

with respect to its gradient.

• The shapelet function must allow preservation of phase

information in the signal.

• The bank of shapelet filters should, ideally, provide

uniform coverage of the signal spectrum so that it is

faithfully reconstructed.

To achieve a shapelet with minimal ambiguity of shape

with respect to its gradient it should be simple, and ideally

take the form of a single, symmetric peak so that (in 1D)

the gradient function will have a single positive peak and

a single negative peak. This also ensures that the admissi-

bility condition is satisfied. With the assumption that the

shapelet is non-negative and symmetric, say a Gaussian, the

gradient function will be odd-symmetric, resulting in a fre-

quency domain transfer function that is complex and odd-

symmetric. Changing the scale of the shapelet will have the

effect of changing the separation of the peaks of the gra-

dient function producing a transfer function that responds

to a different band of frequencies. Thus, if several scales of

shapelets are used one can achieve fairly complete coverage

of the spectrum.

An important constraint is that the transfer function of

the shapelet gradient should not corrupt phase information

in the gradient of the signal [25]. This implies that the

transfer function of the shapelet gradient should be non-

negative for positive frequencies and non-positive for neg-

ative frequencies. Achieving this with a simple shape of

1The term ‘shapelet’ was first coined by Refregier for his orthonormal

basis set consisting of weighted Hermite polynomials [26]. Here we use to

term to describe any basis function of finite support used for representing

shape.
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Figure 1. A shapelet bank formed by five

Gaussians with height proportional to scale
(top), and the corresponding transfer func­
tions of their gradients (bottom). The dashed

line shows the sum of the transfer functions,
ideally this should form a curve that is in­
versely proportional to frequency.

finite support limits the shapelet function to a Gaussian, or

near Gaussian, shape.

Finally we must address coverage of the signal spectrum

achieved by the bank of shapelets. As mentioned above,

correlating the gradient of one shapelet filter with the gra-

dient of the signal will correspond to extracting a band of

frequencies from the signal gradient. The sum of all the

transfer functions of the shapelet gradients will represent

the total energy extracted from the signal gradient spectrum.

The signal gradient spectrum differs from the original signal

spectrum in that its Fourier components are phase shifted

by π/2 and the amplitudes are scaled by the frequency. Ac-

cordingly the sum of the shapelet gradient transfer functions

should attempt to form a curve that is inversely proportional

to frequency to counteract this scaling of the gradient spec-

trum. Ideally the net result is that we obtain uniform cov-

erage of the original signal spectrum. This ensures all fre-

quency components of the signal are represented equally

and we obtain a faithful reconstruction, up to a scale factor.

For 1D signals a suitable shapelet basis set can be con-

structed by a set of Gaussian functions with the scaling be-

tween successive filters being a factor of two and the heights

of the Gaussian functions being proportional to scale. Fig-

ure 1 shows such a shapelet bank formed by five Gaussians.

In this situation we clearly do not have an orthogonal

basis set. This is not of great concern if we ensure we

have a strongly redundant, or overcomplete, basis set. Re-

dundancy in the basis set is achieved by using a continu-

Figure 2. A redundant, or overcomplete, non­

orthogonal basis set, shown on the left, can
be considered to be the sum of several or­
thogonal basis sets, as seen on the right.

Thus accurate reconstruction, up to a scale
factor, can be obtained.

ous wavelet/shapelet decomposition and by using a small

geometric scaling factor between successive scales of ba-

sis function shapes. Within a strongly redundant non-

orthogonal basis set one can take each basis function and

find another that is approximately orthogonal to it. Thus

we can consider a redundant non-orthogonal basis set as

approximating the sum of several orthogonal basis sets.

This means that we can achieve accurate reconstruction of

a function up to a scale factor. If necessary this scale fac-

tor can be determined and the scale of the reconstruction

corrected. Overcomplete basis sets have been advocated by

Simoncelli et al. [27], and Olshausen and Field [24]. They

have the advantage that small changes in local signal fea-

tures result in smooth transitions in the basis coefficients,

overcompleteness also provide robustness in the presence

of noise.

For the reconstruction of a 1D signal from its gradients

we calculate the gradient correlation at each shapelet scale

using

Ci = ∇f ? ∇si , (1)

where ∇f and ∇si denote the gradients of the surface and

shapelet at scale i respectively, and ? denotes correlation.

These correlations are then summed to form the reconstruc-

tion, R. Note that the reconstruction will be scaled by the

degree of redundancy of the shapelet basis set.

R =
∑

i

Ci . (2)

3. Shapelet reconstruction in 2D

Two-dimensional fields of surface normals are typically

calculated and/or specified in terms of slant and tilt. The

following discussion assumes we have orthographic knowl-

edge of the slant and tilt values over the surface. It is de-

sirable that correlation between the gradients of the surface

and shapelets be defined in terms of slant and tilt separately

and then combined because often the calculation of these

two quantities is obtained by very different means, and they



Figure 3. A surface with a peak and a trough
along with its corresponding needle diagram

showing the different tilt values.

can be subject to differing degrees of uncertainty. For ex-

ample, tilt often has an ambiguity of π.

The procedure that has been adopted is as follows: Cor-

relation of the surface and shapelet slants is done in terms

of the gradient magnitude which is given by the tangent of

the slant, σ
|∇| = tan(σ) . (3)

The gradient correlation is then formed as

C∇i = |∇f | ? |∇si| . (4)

With no tilt information this correlation matches positive

and negative gradients equally because we only have access

to the gradient magnitude. Thus a mound in the surface will

correlate equally with a similarly shaped depression in the

surface. To be able to make a distinction between positive

and negative shapes tilt information must be used.

If at some point the surface and shapelet gradient magni-

tudes match and the tilt directions also match then the com-

ponent of the shapelet at this point must be positive. If the

tilts of the surface and shapelet are in opposite directions

then the shapelet component must be negative. If the tilts

are orthogonal then there is no correlation, positive or neg-

ative, between the surface and shapelet. Thus the gradient

correlation must be multiplied by a tilt correlation measure

that varies between 1, when tilts are aligned, to -1 when

the tilts are in opposite directions. An obvious measure that

satisfies this requirement is the cosine of the tilt angle dif-

ference. To form the tilt correlation between a shapelet at

scale i and the surface we sum the cosine of the tilt differ-

ences between points on the surface and shapelet, and use

the standard trigonometric difference equation to overcome

any angle wraparound problems at the origin. Thus

Cτi = cos(τf ) ? cos(τsi) + sin(τf ) ? sin(τsi) . (5)

where τf and τsi denote the tilts of the surface and shapelet

at scale i respectively.

The overall correlation measure between surface and

shapelet at scale i is obtained by the point-wise product of

the gradient and tilt correlations

Ci = C∇i.Cτi

= |∇f | ? |∇si|.[cos(τf ) ? cos(τsi)

+ sin(τf ) ? sin(τsi)]

= [ |∇f |. cos(τf ) ] ? [ |∇si|. cos(τsi) ]

+[ |∇f |. sin(τf ) ] ? [ |∇si|. sin(τsi) ] , (6)

where . denotes point-wise multiplication. This process

is performed over multiple shapelet scales and the results

summed to form the reconstruction

R =
∑

i

Ci . (7)

4. Results

The following results were obtained using a bank of

Gaussian shapelets with a geometric scaling factor of 2 be-

tween successive shapelets, the standard deviation of the

smallest shapelet was 1. Note that for 2D reconstructions

the heights of the Gaussian shapelets should be constant,

rather than being proportional to scale as with the 1D case.

A synthetic test surface was constructed and slant and tilt

values extracted. These were then supplied to the algorithm

to see how well the original surface was regenerated. Fig-

ure 4 shows how, starting with the smallest shapelet scales

and working up, the different scales combine to produce the

reconstruction. Figure 5 shows the results of applying the

shapelet reconstruction algorithm to real data. Here the sur-

face slant and tilt values of the pear were obtained via Loh’s

shape from texture algorithm [19, 20].

4.1. Reconstruction with the presence of noise

To illustrate the robustness of the reconstruction Gaus-

sian noise was added to the slant and tilt values of the test

surface with standard deviations of 0.3 radians. Noisy slant

values were clamped to the range 0 to π/2 − ε, where ε
was set to 0.05 radians, to exclude impossible values. With

this level of noise reconstruction via direct integration based

approaches fail completely. The shapelet reconstruction

results using 6 scales are shown in Figure 6. For com-

parison the surface reconstructions obtained via Frankot

and Chellappa’s algorithm [10] and Terzopoulos’ multigrid

method [29] are also shown.
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Figure 4. Reconstructions of a test surface
from slant and tilt data using 2, 4 and 6
shapelet scales. These show the effect of pro­

gressively adding lower frequency surface
gradient information.

These results demonstrate that the shapelet reconstruc-

tion algorithm shares the strong robustness to noise that

the Frankot and Chellappa algorithm has. Typically the

reconstruction will be slightly smoother than the Frankot

and Chellappa reconstruction because the smallest shapelet

scale still excludes some of the high frequency components

of the noisy surface gradient data. For Terzopoulos’ multi-

grid method 200 iterations, applied at each of 3 scales of

analysis, were used. At the locations of the discontinu-

ities in the surface the multigrid thin plate spline parame-

ters were manually preset to allow orientation discontinu-

ities, this improved the reconstruction but increased the in-

fluence of noise at these points. Note that at the lower scale

grid representations one cannot place these discontinuities

in their ideal locations. The resulting errors in the low scale

reconstructions propagate to the finer scales. With appro-

priate parameters the multigrid approach can be tolerant to

noise but it has difficulty propagating constraints across the

surface when only surface orientation data is supplied.

Segmented pear image. Normals from texture

Reconstructed surface. Texture mapped reconstruction.

Figure 5. Reconstruction of a pear using slant

and tilt deduced from texture.

It should be noted that the results presented here are for

noise levels that are much larger than are typically presented

in the literature. For example Wei and Klette [31] present

results for Gaussian noise with a standard deviation of only

0.01, similarly Noakes and Kozera [22] provide results for

Gaussian noise of 0.04 standard deviation. However, a re-

cent exception to this is the work by Karaçali and Snyder [6]

where they present a good quality reconstruction of a sur-

face where the signal-to-noise level, expressed in terms of

gradient space noise, was 0dB. The target surface that they

were reconstructing was continuous with a maximum gra-

dient of approximately 2.5.

4.2. Reconstruction with tilt ambiguity of π

The previous section has demonstrated that the shapelet

reconstruction approach provides reconstructions that are

highly robust to noise. However, the key advantage of the

approach is that it also allows reconstructions to be consid-

ered where there is an ambiguity of π in the tilt data, or

where there is no tilt data at all. Measurement of surface

tilt via shape from shading or texture will typically have an

ambiguity of π. With such an ambiguity one is unable to de-

termine whether a shape is positive or negative. This causes

considerable problems for any reconstruction algorithm that

requires as input gradient information with respect to x and

y. However, some form of surface reconstruction is possible

via shapelets.

To account for the ambiguity of π the tilt correlation
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Figure 6. Surface reconstructions from slant

and tilt data with additive Gaussian noise hav­
ing standard deviation of 0.3 radians.

measure is modified so that we work with the squared co-

sine of the tilt differences. Using the trigonometric double

angle formula equation 5 is modified to be

Cτi =
cos(2τf ) ? cos(2τsi) + sin(2τf ) ? sin(2τsi) + 1

2
.

(8)

This provides a measure that varies from 1, when tilts are

aligned, down to 0 when they are orthogonal, and then back

to 1 when they are in opposite directions. The slant correla-

tion remains as before.

The reconstructions obtained on the peak and trough, and

ramps test surfaces are shown in Figure 7. Note that ‘neg-

ative’ shapes are reconstructed in the ‘positive’ direction as

this is the implicit assumption of the reconstruction process.

With the tilt correlation modified to allow for tilt ambigu-

ity both the slant and tilt correlation measures are always

non-negative. Thus the surface is constructed purely by the

addition of the non-negative basis functions. This limits the

shapes that can be reconstructed. The quality of the recon-

structed shapes is also degraded and some artifacts are pro-

duced. Note the additional lobes that have been produced at

the sharp discontinuities at the edges of the ramps surface.

Here the shapelet function would normally have a strong

negative correlation with the surface normal of the shapelet

being in the opposite direction to the surface normal of the

surface. However, the modification to the tilt correlation to

allow ambiguity of π results in a correlation that is positive

at these points.
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tilt ambiguity of π. The peak and trough sur­
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right.
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Figure 8. Reconstructions of the two test sur­

faces using slant data alone.

4.3. Reconstruction from slant or tilt alone

Interestingly, some form of reconstruction is achieved if

one only uses the gradient magnitude correlation and ig-

nores the tilt, this is shown for the two test surfaces in Fig-

ure 8. Note that the slant correlation is always non-negative

so again we only reconstruct ‘positive’ surfaces. Despite

this the reconstructions based on slant alone are surpris-

ingly good. Reconstruction using only the tilt correlation is

weaker than using slant alone. Even though tilt provides in-

formation about positive and negative shape it does not pro-

vide knowledge of the magnitude and reconstructions using

tilt information alone are typically very poor.

4.4. Shape from occluding contours

The boundary of an object provides a cue to the ba-

sic shape of an object not only through the position of the

boundary but by the fact that the normal to the surface at an

occluding contour is at 90 degrees to the viewing direction.

Occluding contours were marked manually on an image of

the Mona Lisa. Along these contours the slant was set to

π/2 and tilt was assigned to be perpendicular to the con-

tour with the appropriate direction. At all other points in

the scene the slant was assumed 0. This gradient field is

far from integrable (at line terminations and T junctions)



Figure 9. Shape reconstruction of the Mona
Lisa from occluding contours.

but the shapelet reconstruction approach has no difficulties

with this. This very crude approximation of what the sur-

face normals are for the whole scene is enough to construct

a simple 2 1

2
D representation of the scene.

5. Conclusions

Reconstructions of surfaces from their surface normals

via shapelets provides a new reconstruction method that is

simple to implement and is highly robust to noise. The use

of basis functions implicitly imposes a continuity constraint

in the reconstruction, yet at the same time allows sharp tran-

sitions to be represented in the surface via the finer scales

of shapelets. There is no need to infer the locations of dis-

continuities in the surface and/or apply special conditions

at these points. The correlation process treats slant and tilt

separately and makes the different roles of slant and tilt ex-

plicit in the reconstruction process. This permits data with

tilt ambiguity to be considered and allows slant and tilt data

to be considered in isolation. These options would be im-

possible to consider using a reconstruction process based on

integration of gradients. It is envisaged that the flexibility

and robustness of the shapelet reconstruction approach will

create opportunities for new shape from texture and shape

from shading algorithms. For example, where tilt informa-

tion is uncertain one may be able to adopt an iterative ap-

proach. First, a surface would be hypothesized using slant

information and, if available, any estimates of tilt. The sur-

face would then be verified by comparing an estimate of the

appearance of the reconstructed surface against the origi-

nal image, and on the basis of this the tilt estimates would

be updated. This would be repeated until convergence oc-

curred.

MATLAB code is available for those wishing to replicate

the results presented here [16].
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