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Abstract

One common task in Computer Vision is the estimation of three-dimensional surface
shape from two-dimensional images. This task is important as a precursor to higher
level tasks such as object recognition — since the shape of an object gives clues to
what the object is — and object modeling for graphics. Many visual cues have been
suggested in the literature to provide shape information, including the shading of
an object, its occluding contours (the outline of the object that slants away from
the viewer) and its appearance from two or more views. If the image exhibits a
significant amount of texture, then this too may be used as a shape cue. Here,
‘texture’ is taken to mean the pattern on the surface of the object, such as the dots
on a pear, or the tartan pattern on a tablecloth. This problem of estimating the
shape of an object based on its texture is referred to as shape-from-texture and it
is the subject of this thesis.

One motivation for studying shape-from-texture is the fact that, according to
psychophysical experiments, texture plays an important role in the human percep-
tion of shape. It would be useful if computers could mimic this behaviour. Some
advantages of using texture as a cue are that it allows shape to be recovered from
static monocular images (rather than multiple views) and the fact that textures are
ubiquitous in the world around us. Another reason for studying texture as a shape
cue is to use it in combination with other cues for a more robust solution.

During the past three decades, there has been much work in shape-from-texture.
This thesis contributes to the existing body of work by providing three new algo-
rithms: two are shape-from-texture algorithms that solve the problem under dif-
ferent sets of assumptions regarding the texture and viewing geometry; the other

algorithm solves the low-level task of estimating the transformation between patches



of texture. These three algorithms are described in more detail below.

The first shape-from-texture method is fast and direct, and works with homo-
geneous and stationary textures viewed orthographically, with the frontal texture
known. The method is based on the fact that as textures are foreshortened due to
the relative orientation of the surface patch to the viewer, the second spectral mo-
ments do not change about the axis orthogonal to the tilt axis. From this, the tilt
axis may be identified, which in turn leads to an estimation of the slant angle of the
surface patch. In this way the orientation of each surface patch may be solved. A
number of issues affecting the ideal behaviour of the system are explored, including
the scaling property of the Fourier transform, windowing schemes, illumination and
blur. A property of the method is that occluding boundaries are estimated to curve
away from the viewer. The new method is compared to a recent and well-known
method from the literature that uses the same assumptions regarding texture and
viewing geometry. This thesis demonstrates that the new method has many advan-
tages over the other existing method; among other things it is more robust, does
not exhibit any ambiguities other than the unavoidable tilt ambiguity of +7, and
never returns complex, and hence unusable, values.

The second shape-from-texture method aims to solve the problem in one of its
most general forms; the texture is not assumed to be isotropic, homogeneous, sta-
tionary or viewed orthographically. In addition, the frontal texture is not assumed
to be known a priori, or from a known set, or even present in the image. Instead it
is assumed that the surface is smooth and covered in identical texture elements; this
assumption allows the entire surface to be recovered via a consistency constraint.
The key idea is that if the correct transformation from an arbitrary reference texel
to a frontal texel can be estimated only then will a consistent, integrable surface be
produced. It is shown that a Levenberg-Marquardt search can estimate the frontal
texture efficiently. The methods described in this thesis have been quantitatively
tested on the entire set of Brodatz textures and also on real images.

This thesis also investigates the relationship between shape-from-texture and
structure-from-motion. If the camera is stationary and the moving object is planar,

or nearly so, then the superposition of the images of the moving object produce
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a texture, the structure of which can be solved. The second shape-from-texture
algorithm was adapted to demonstrate an example of such a structure-from-motion
reconstruction.

The other algorithm that is presented in this thesis estimates the transformation
between patches of the same texture, viewed from different orientations. Previous
methods for doing this are shown to be non-robust or have limitations if the change
between the two texture patches is not incremental. The new method overcomes
the drawbacks of these previous methods, as well as being robust to blurring and
illumination variations.

The work in this thesis is likely to impact in a number of ways. The second
shape-from-texture algorithm provides one of the most general solutions to the
problem. On the other hand, if the assumptions of the first shape-from-texture
algorithm are met, this algorithm provides an extremely usable method, in that
users should be able to input images of textured objects and click on the frontal
texture to quickly reconstruct a fairly good estimation of the surface. And lastly,
the algorithm for estimating the transformation between textures can be used as a
part of many shape-from-texture algorithms, as well as being useful in other areas
of Computer Vision. This thesis gives two examples of other applications for the

method: re-texturing an object and placing objects in a scene.
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Preface

Some of the research presented in this thesis has been published previously.

An early version of the new method for the orthographic camera model (Chap-
ter 3) has been published in the proceedings of Digital Image Computing: Tech-
niques and Applications [56]. An extended technical report on a later version of
the algorithm is available in the School of Computer Science Technical Report Se-
ries [54]. Peter Kovesi contributed some of the theory regarding factors such as blur
and illumination.

The contents of Chapter 5 on the new method for the perspective camera model
have been published in the proceedings of the British Machine Vision Confer-
ence [55]. Richard Hartley originally suggested that the assumption of surface
smoothness, together with some consistency constraint could be used to solve
shape-from-texture for perspective views of a non-homogeneous, anisotropic and
non-stationary texture.

The work on the estimation of affine transformations between textures (Chap-
ter 4) has been published in the proceedings of Digital Image Computing: Tech-
niques and Applications [57]. This paper won best student paper at the conference.
The original idea was jointly produced by Andrew Zisserman and myself.

Unless otherwise stated, all the work presented in this thesis is entirely my own.
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Chapter 1

Introduction

Electronics give machines the ability to capture information from the visible part
of the electromagnetic spectrum, an ability that humans already possess. However
simply capturing this information is not the same as understanding it. A digital
camera can no better differentiate between the various subjects it is aimed at, than a
tape recorder can differentiate between the works of Sibelius and Black Sabbath. In
comparison, for most humans the understanding of visual input is so fundamental
as to seem instantaneous. We barely devote a conscious thought to the task of
making sense of the constant stream of pictures that flash before our eyes. Our
understanding of this data allows us to perform vastly complicated tasks, such as
the recognition of objects and navigation in almost all aspects of our daily lives.
Just like humans, the more computers are able to understand their visual input,
the more complex and useful the tasks they can perform. This is the motivation
behind Computer Vision, the study of making computers “understand” what they
are seeing.

The existence of Computer Vision is due to the fact that the world is composed
of three-dimensional objects, but the information captured by a camera is two-
dimensional, so processing is required to understand these images in the context
of the world. This task was, in the sixties, perceived by Artificial Intelligence
experts as being no more difficult than a summer student’s project [22]. Decades of
Computer Vision research has proven that the problem is far more difficult than at

first thought. This points toward the fact that the human brain does a significant
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amount of processing, using many visual cues, to arrive at our interpretation of the
world.

In Computer Vision language, the word ‘understanding’ is taken to mean the
extraction of a certain piece of information. Some of the most important pieces of
information that may be derived from visual data are the position, orientation, size
or shape of the objects in an image. The study of extracting shape information
has itself evolved into branches of Computer Vision known as shape-from-X, where
‘X’ is replaced with a visual cue that provides some shape information. These cues
include shading, contours, multiple views, shadows, and texture. The latter cue,
texture, refers in this context to the visual pattern that lies on the surface of the
object, such as the dots on a pear or the tartan pattern on a tablecloth. An example
of the application of shape-from-texture is given below.

Although the image in Figure 1 is nothing more than a two-dimensional image, it

is perceived by most people as a three-dimensional cylinder. The aim of my research

Figure 1: An image perceived by most people as a hollow cylinder covered in a
checkered pattern.

has been to create algorithms that allow a computer to arrive at the same conclusion.

This aim is fulfilled by interpreting the apparent visual distortion of the texture.



For example, the checkered pattern in Figure 1 appears to compress towards the left
and right edges of the cylinder, giving the appearance that the surface is curving
away from the viewer. By analysing the mathematical relationship between an
object’s shape and this form of distortion (as well as other forms of distortion), one
may find shape-from-texture solutions.

A lot of work has been devoted to other forms of shape-from-X. This includes
the studies in shape-from-shading [26, 28, 6, 27, 45], shape-from-multiple-views
[65, 4, 76], shape-from-contours [40, 59, 82] and shape-from-shadows [13, 24, 38, 87].
Unlike these studies, there are surprisingly few shape-from-texture methods [15],
and this is one motivation for its continuing study. There are also many other
reasons for studying shape-from-texture. Textures provide shape information from
static monocular images, rather than multiple views. Psychophysical experiments
have demonstrated that texture plays an important role in the human perception
of shape [8, 12, 81]. It is a reasonable approach to use the same cues as people
use, to achieve automated shape estimation. Textures are ubiquitous in the world
around us, providing a good source of shape information. Some common textures

are shown in Figure 2.

tree bark

leaves

tyre tread knitted material bricks linen basket weave

Figure 2: Textures are ubiquitous in the world around us. They occur in nature, as
shown by examples in the top row, or can be manufactured, as shown by examples
in the bottom row.

For a machine to robustly estimate the shape of objects in the real world, it
must, like the human visual system, utilise many different shape cues [11]. T have

studied shape-from-texture in the hope that one day my work may become part of
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a larger system that combines many shape cues. It is my hope that machines that
can perceive the shape of objects will then use this ability to perform very useful
tasks; I imagine that one day robots will be able to identify and retrieve objects,
move about autonomously to transport goods, and accomplish other tasks that will

help us with our daily lives.



Chapter 2

Overview of Shape-from-Texture

2.1 Shape

The aim of my research has been to automatically estimate the shape of objects.
A coordinate frame is placed on an object and its shape is given by the three-
dimensional coordinates of points on its surface. No universal coordinate frame is
used and therefore the pose of the object is not calculated.

In the work described in this thesis, shape estimation generally occurs in two
parts: firstly, the orientation is calculated at points on the object’s surface, giving
the surface normal directions. This has been the focus of my work. Secondly,
the surface is reconstructed using the surface normals. For this task, a number of

algorithms may be used; these are discussed in Section 2.1.2.

2.1.1 Orientation

The orientation at a point on a surface may be specified by the slant o and tilt
7 of the surface. Slant is defined as the angle between the surface normal and the
optic axis (see Figure 3). Tilt is defined as the angle between the projection of the
surface normal onto the image plane and the x-axis of the image. The more an
image is slanted, the more it visually appears to be compressed. Figure 4(a) shows
an image viewed frontally i.e. such that its surface normal points directly out of

the page. If the image were slanted in three-dimensional space it might look like
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surface
=0 |
S :
S !
q) |
= |
kS !
[T |
£ !
3 !
9 1
5 !
/fc image plane

Figure 3: Depiction of slant and tilt angles (adapted from [19]).

the images in Figures 4(b)—(d), where (b) has the slightest slant angle of the three
images, and (d) has the greatest slant angle. The tilt angle is the angle in which
an image visually appears to compress. Figures 4(e)—(g) show the image when the

slant angle remains constant, but the tilt angle varies.

2.1.2 Producing surface shape from normals

Once the slant and tilt have been determined for points on the object’s surface the
shape of the surface may be reconstructed. The literature describes several ways to
do this.

In the work described in this thesis, surface shapes have been reconstructed using
the method by Kovesi [44]. This method correlates the surface gradients with the
gradients of some basis functions. The correlations are summed to give the surface
reconstruction. The method works because the correlation between the gradient
of a basis function with the surface gradients gives the same information (up to
scale) as the correlation between the surface and the basis functions themselves.
The method is robust to noise and has the advantage of having the code readily
available [42].

There are other techniques which may have been used instead of Kovesi’s method.
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) An image viewed frontally

\JJ SR
(e) (f) (8)

Figure 4: Depiction of slant and tilt. Increasing slant is shown in (b)—(d) while tilt
remains at 0. Various tilt angles are shown in (e)—(g) while slant remains constant.

Frankot and Chellappa [17] reconstruct a surface by projecting the surface gradients
onto a set of integrable basis functions (Fourier basis functions). Alternatively, the
traditional approach is quite different to the methods of Kovesi, and Frankot and
Chellappa. It involves integrating the surface normals, and requires some regular-
isation technique to ensure that the surface gradient is integrable. For example,
Terzopoulos [80] uses an energy function to minimise deviation from depth and ori-
entation constraints, as well as surface discontinuity. However the energy function
exhibits some gross dimensional inconsistencies. Many other regularisation tech-
niques have been proposed [29, 85, 66, 39], however in general, the approach that

integrates surface normals can be very sensitive to noise.

2.1.3 Distance

Instead of calculating surface normals then using them to reconstruct shape, one

may use another approach to shape reconstruction. Distances may be calculated
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between the camera’s focal point, and points on the surface. Assuming that the
camera calibration is known, surface point coordinates may be obtained by ray

cutting along rays where the distance is known (see Figure 5). The entire surface

rays are cut >

///r Interpolated surface
-
B

Image plane

Figure 5: Ray cutting to obtain surface coordinates. The rays are cut at the
estimated distance from the focal point to the surface. The estimated surface,
shown as the dotted line, is then interpolated.

shape may be reconstructed by interpolating between the known 3D coordinates
of surface points. Although this is not the approach generally used in my research
this thesis does present an example where shape is constructed using distances in

Section 5.3.1.

2.2 Texture

In this thesis, the word, ‘texture’ is taken to mean the visual surface pattern of
an object. This pattern is assumed to have no surface height; in other words it is
“painted onto” the surface. This is a common assumption in Computer Vision, al-
though novel work exists that assumes texture to have in itself a three-dimensional
structure; Leung and Malik [50] recover shape from textures that are self-occluding,
such as the field of flowers shown in Figure 6(c) and the rows of soldiers shown in
Figure 6(d). The occlusions themselves are used as a cue to infer shape. Koen-
derink and Pont [41], and Chantler [9] use the rugosity (or roughness) of textures
to determine information about the illumination. The assumption that textures
have no height does not drastically restrict the applicability of shape-from-texture

algorithms because this assumption is representative of many real world textures.
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(c) Field of flowers (¢) Soldiers marching

Figure 6: Textures assumed to have no height are shown in (a) and (b). The
textures in (c) and (d) do not fit this assumption.

The literature often states that textures consist of texture elements, otherwise
known as tezels'. Texels are instances of a pattern that is repeated across a surface.
For example in Figure 6(a), each spot is a texel. However many real textures, such

as wood grain, are not composed of individual texels.

2.3 Assumptions

In all shape-from-texture work, it is necessary to make assumptions about the cam-
era model, texture and surface. This section outlines the most common assump-
tions, and defines them as they are used in this work.

Surfaces are usually either assumed to be planar or curved. Earlier work
tended to focus on estimating the orientation of planar surfaces and in later work,
the focus shifted to curved surfaces as will be seen in the following section. In the

work described in this thesis, shape is estimated for curved surfaces.

I Texels are sometimes referred to in the literature as textels, texons or textons.
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The most common camera models are the orthographic model and the per-
spective or pin-hole model. In the orthographic model, it is assumed that the
viewing angle is small compared to the distance to the surface. As such, the light
rays incident on the image plane are modeled as parallel rays. In practice this set
up can be approximated by photographing the object from a large distance and
using a zoom function on the camera. In the perspective model, the light rays
converge to a focal point. When performing shape-from-texture using the ortho-
graphic camera model, the texture is assumed to undergo the foreshortening effect,
that is, the texture visually appears to compress in some tilt direction but does not
scale depending on its distance from the camera. On the other hand, when using
the perspective model, it is assumed that the texture may scale depending on its
distance to the camera, as well as foreshorten.

Common assumptions for texture are homogeneity, stationarity and isotropy.
In this work, these terms are defined as such: Homogeneity means that the distance
between texels and their pattern of placement is consistent across the surface. The
term refers to the location of texels, without regard to the rotation of each texel.
Stationarity means that the texels differ by a translation on the surface but not a
rotation. Isotropy means that the texel has a constant second moment or inertia
about every axis. The inertia of a texel is a function of angle, given by

1(0) = Y 31 (i.) 1)

i

where f(3, j) is the value of the image of the texel at (4, j) and r is the perpendicular
distance from (i,7) to the axis in the direction #. The inertia of a texel can be
depicted with an ellipse as shown in Figure 7. For each image in Figure 7 the
distance from the centroid to the point on the ellipse in the direction € is the
value of the inertia about the axis orthogonal to 6. Roughly speaking, a texture
is isotropic if the texels are as round as they can be. The fish in Figure 7(d), for
example, is isotropic and therefore its inertia is represented by a circle.

To further illustrate the definitions of homogeneity, stationarity and isotropy,
it is easiest to consider the cases where textures do not exhibit these properties.

See Figure 8. The waterlilies are non-homogeneous because they are not placed
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ot @

(a) (b)

Figure 7: The inertia of a texel can be depicted with an ellipse.

on the water’s surface in a regular pattern. The donut’s texture is non-stationary
because the sprinkles are rotated on the surface. The lamp has an anisotropic
texture because the texels are long and thin, instead of round; in other words the
inertia is not constant about all axes because higher frequencies are encountered

in the vertical direction than in the horizontal direction. As another example, in

Waterlilies: Donut: Woven lamp:
non-homogeneous non-stationary anisotropic

Figure 8: Examples of non-homogeneous, non-stationary and anisotropic textures.

Figure 6(a) the texture on the shoes is homogeneous, stationary and isotropic.

2.4 Projection geometry

In this work, the general transformation T of a surface point x; expressed in two-

dimensional surface coordinates to an image point x; is given by
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x; = Tx,
= (UKU")(S)(UV™")x,
where
U - cos(t)  sin(r) |
—sin(7) cos(7)
0 2
K - cos(o) | (2)
0 1
s 0
S = , and
0 s
6 in(f
vV - cos(f) sin(h)

—sin(f) cos(#)

=fofof

a) Original image ) Rotated by Uv? ) Rescaled by S ) Slanted by UKU?T
(or texel in to give reoriented
this context) image (or texel)

Figure 9: Components of a local texture imaging transformation, shown as a se-
quence of transformations.

The overall transformation T linearly approximates the transformation from the
frontal view of a texture to its observed view. Its components are explained in the

following list.

e The transformation UVT is some initial rotation of the frontal texture by the
angle —0 + 7. An example is shown in Figure 9(b). This transformation does
not play a role in determining orientation since initial rotations of the frontal
texture do not alter its slant or tilt. Also, UVT is omitted when dealing with

stationary textures since surface rotations are not considered.



2.5. PREVIOUS WORK 13

e The transformation S scales the frontal texture isotropically by a factor of
s. See Figure 9(c). This transformation is omitted when dealing with an

orthographic camera model.

e The foreshortening effect is due to UKU™. This transformation is interpreted
as a rotation about the negative of the tilt angle 7, a foreshortening in the
horizontal direction by a factor of cos(o), followed by a rotation about the tilt

angle. An example is shown in Figure 9(d).

The overall transformation T is in the set of local texture imaging transforma-

tions [16], which is a subset of affine transformations.

2.5 Previous work

Gibson first suggested in 1950 that the human perception of 3-dimensionality is
influenced by texture gradients [18]. Gibson analysed the case of a perspective
projection of a textured ground plane. The plane was assumed to be covered with
texels at a uniform density (where density is given in number of texels per unit area
in the image). Gibson observed that the orientation of the surface could be derived
from the gradient of the texture density.

Since Gibson’s seminal work, a plethora of computational methods have emerged
which estimate shape using texture cues. Early work includes that of Witkin,
who solved the orientation of surfaces using the assumption that the texture is
isotropic [86]. This assumption is rather restrictive and does not apply to the
majority of textures which are directional. For example, in Witkin’s paper, he
showed how a hair texture gave incorrect results because it was not isotropic.

Like Witkin’s work, many early studies were feature-based. They involved detect-
ing features such as texels, edges, or line segments and shape was then estimated by
analysing properties of those features, such as their density gradient, area, and size.
These early studies include the work of Stevens [77], Kender [37], Ohta et al. [67],
Ikeuchi [30], Aloimonos and Swain [1], Blostein and Ahuja [3] and Kanatani and
Chou [35]. One drawback of the feature-based approach is that it requires a feature-
detection step. It has also been argued [79] that the feature-based approach does
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not make full use of the information available.

An alternative approach utilises the spectral information. Methods of this type
compare the spectral representation of windowed image patches to recover orienta-
tion. Commonly used spectral representations are the Fourier transform, wavelet
decomposition and Gabor transform. An advantage of the spectral approach is that
windowing issues are made simple; a slight shift in the windowing function affects
the image domain, but only affects the phase part of the spectral representation.
Often, the phase information is discarded and only the amplitude information used.

The first work using a spectral approach was by Bajcsy and Lieberman [2]; they
used the Fourier power spectrum to estimate the transformation between a pair
of spectra using the location of peaks in each representation. The transformations
gave the relative depths of a ground plane.

Brown and Shvaytser [7] also worked on the ground plane problem. They as-
sumed an isotropic texture and used the autocorrelation function to recover orienta-
tion. However, as implied earlier the assumption of isotropy is generally considered
as being overly-restrictive.

Garding [20] developed an elegant differential framework for shape-from-texture.
In his work, Garding derived the relationships between changes in texture gradient
and the differential geometry of curved surfaces with stationary textures. However
Garding’s contribution was mainly theoretical, as he assumed isotropy in empirical
tests. His theoretical framework was then adopted by Malik and Rosenholtz [60].
They proposed a method to solve for the affine transformation directly and showed
some good results for a variety of surfaces. Clerc and Mallat [10] proposed a method
similar to that of Malik and Rosenholtz, using wavelets instead of the Fourier trans-
form.

Forsyth [16] pointed out that in the work of Garding, Malik and Rosenholtz,
and Clerc, stationary textures are assumed. In his work Forsyth solves shape-from-
texture without assuming homogeneity, isotropy or stationarity for orthographic
views. Forsyth also points out that in order to solve the same problem for perspec-

tive views, something of the surface geometry must be known.
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This thesis presents a new shape-from-texture method that uses the same as-
sumptions as Forsyth’s work [16], except that perspective views are accounted for
— that is, scaling of texels are allowed. The texture is assumed to be smooth
and a consistency constraint is used to determine surface shape. This algorithm is
presented in Chapter 5 of this thesis.

The shape-from-texture method in Chapter 5 is designed to be a very general
method that avoids many assumptions about the texture. In contrast, the other
new shape-from-texture method presented in this thesis (Chapter 3) is designed to
work for cases that are less general but that are still common for many everyday
objects; the textured surface is assumed to be homogeneous, stationary and viewed
orthographically. The method is fast and direct, and gives good results for real
images. The new method uses the same assumptions as the well-known method by
Super and Bovik [79], and a comparison of the two methods is given in Chapter 3.

One aspect of many shape-from-texture algorithms that deserves special atten-
tion is calculating the affine transformations between patches of texture. Not only
does this task play a key role in many shape-from-texture methods (since the trans-
formation can lead to surface orientation), but it is useful in a variety of applications
such as object re-texturing. A usual way to find the affine transformation between
two images is to locate feature points (such as Harris points) in the two images
and to compute the correspondences [34]. Three points (that are not co-linear)
are required to specify the affine transformation. This method will work if the two
patches of texture are two views of the same portion of texture. However if the
two patches are different portions of the texture, point correspondences cannot be
made. This observation is described in detail, with examples, in Chapter 4.

Ways of solving the affine transformation without using point correspondences
have been proposed. For example, Malik and Rosenholtz [60] solve the affine trans-
formation using the Fourier spectrum, however their method can only be used in
cases where there exists a small difference between the two textures. In Krumm
and Shafer’s work [46], the affine transformation between textures was solved by
searching over every combination of slant and tilt in a discrete set, however this

method is computationally very expensive. Ribeiro et al. [72] observed the shift in
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peaks of the Fourier transform to estimate the affine transformation. Correspon-
dences between peaks were made manually. In theory these correspondences can
be made automatically, based on the rank of the peaks in terms of magnitude. In
practice however, the rank of peaks is highly subject to noise. Kanatani [33] solved
the slant and tilt components by relating these to the second Fourier components
of the inverse Buffon transform. It was found [74] that the approximations that are
used to solve the problem cause errors that increase with slant and tilt angles. Sato
and Cipolla [74] developed a method for solving the affine transformation between
textures using the changes in the first, second and third moments of the edge orien-
tation, and the changes in density. Unlike the feature-point approach, their method
did not require the correspondence of features, however extraction of features was
required.

This thesis contributes a new method for calculating the affine transformation
between two patches of texture that does not require features to be detected. The
method simply transforms each patch of texture to its isotropic state and the cal-
culates the similarity transform between the two isotropic textures. From this the
transformation between the two original texture patches can be calculated. This
method is presented in Chapter 4 and it is used as part of the algorithm in the
following Chapter 5.

Another aspect of shape-from-texture that deserves special attention is the scale
at which we are analysing the texture. Analysis with an inappropriate scale can lead
to severe errors in shape estimation. The issue of scale is not mentioned much in the
majority of shape-from-texture papers, nor in this thesis. There is a commentary
in Chapter 3 about automatically choosing a window size with which to extract
patches of texture. However, automatically setting the scale of analysis is not the
focus of this work and it is assumed that any robust method that adaptively chooses
a correct scale may be used. For shape-from-texture methods which use an adaptive
scale the reader is referred to the work of Stone and Isard [78], Lee and Kuo [47],
and Ribeiro and Hancock [71].
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2.6 Analogy with other studies

To finish this chapter’s general discussion on shape-from-texture, it worth noting
that shape-from-texture is a similar problem to structure-from-motion and shape-
from-multiple-views. This has been pointed out previously [61, 16]. A textured
surface can be thought of as many views of the same texel; any two texels have
different appearances due to their geometric relationship to the observer. If the
true (or frontal) appearance of the texel can be estimated, the orientation of each
observed texel can be estimated, and from this the surface can be reconstructed.
This is similar to the problem of structure-from-motion, in that each observed
texel on a textured surface may represent different observations of a moving object,

the texel. See Figure 10. The aim is to estimate the true shape of the texel.

:
n
I

A textured surface This is similar to a or many views of the
in shape-from-texture texel moving about in  same texel in shape
structure-from-motion  from multiple views

Figure 10: Shape-from-texture and analogous problems.

Structure-from-motion is also a similar problem. The relative motion of the
observer and the object produces the different views of the object, from which the
shape of the object is estimated.

As pointed out by Forsyth [16] much of the theory arising out of shape-from-
texture is analogous to the theory in structure from motion. In Chapter 5.3.5 we
see show how our second shape-from-texture algorithm can be altered to solve a

structure from motion problem.
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Chapter 3

A Method for Orthographic Views

This chapter presents a novel shape-from-texture method that assumes that the tex-
ture is homogeneous and stationary, and that the viewing geometry is orthographic.
The method is based on the observation that, as an image is slanted, the spectral
inertia does not vary about the tilt axis. Hence the tilt axis can be calculated
without explicitly calculating the transformation undergone by the image. Once
the tilt angle is known, slant is uniquely determined using the inertia at the angle
orthogonal to tilt, as will be described in Section 3.1.1, thus completely solving for
the surface normal. In this work, the algorithm was implemented so that it included
a step for user input to identify the frontal texture. This step can be substituted
by any method that automatically identifies the frontal texture, and approaches for
this are discussed. The novelty of the method lies in the exploitation of properties
of the orthographic viewing geometry and hence it is the focus of my work.

The previous algorithms by Garding [20], Malik and Rosenholtz [61] and Clerc
and Mallat [10] also assume texture homogeneity and stationarity, however they
also allow for a perspective viewing geometry. The new method assumes ortho-
graphic views because it is intended to be used on smaller objects such as animals,
clothing and fruit, rather than very large objects such as vast textured landscapes.
If photographed properly (as described in Section 2.3), the perspective effects are
negligible. In the methods by Garding, Malik and Rosenholtz, and Clerc and Mal-
lat, transformations between patches of texture are explicitly calculated, whereas

this is not required in the new method due to the exploitation of properties of the
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orthographic viewing geometry. Thus, the new method has an advantage of being
more direct, with the cost of restricting the type of image one can use.

The shape-from-texture method by Super and Bovik [79] has the same assump-
tions regarding the texture and viewing geometry as the method presented in this
chapter. However their method has an ambiguity in the solution of tilt direction
(due to their mathematical formulation) that the new method does not have. In
addition, their method is prone to returning complex values for tilt, especially near

areas of frontal texture, as will be shown in Section 3.3.

3.1 Description of new algorithm

3.1.1 Theoretical behavior

The method relies on the fact that when an image is foreshortened in a certain

! stretches in that same direction, so that there

direction 7 its Fourier transform
is theoretically no resulting change in the spectral inertia about the axis in the

direction 7 (see Figure 11). The inertia, I is given as follows.

I100) = >3 r’F(u,v) (3)
u v

where F'(u,v) is the amplitude of the Fourier transform at (u, v) and r is the perpen-
dicular distance from (u,v) to the axis in the direction #. Figure 11 (a) represents
the frontal view of some image and Figure 11 (b) represents the image after it has
been slanted in some tilt angle. In theory the tilt could be easily estimated as such:
take the Fourier transforms of the frontal and slanted views of the image. Calculate
the inertia about every axis for both transforms. The tilt angle 7 is the angle at

which the inertia are equal.
Slant can also be estimated. Comparing Figure 11 (c) and (d), we note that the
points in the Fourier image increase their perpendicular distance to the axis as by
a factor of k. Thus the inertia about « is increased by k? since inertia is dependent

on perpendicular distance squared. Therefore £ is given by % where I, and I, are

LFor brevity, the term ‘Fourier transform’ is taken to mean the amplitude of the Fourier trans-
form throughout this chapter.
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Figure 11: Principle for using spectral inertia. The image is contracted in the
direction 7 by a factor of k. In the Fourier image, each point increases its distance
from the a2 axis by a factor of k. Since r1 and r3 are unaffected, this results in no
change in the inertia about the al axis.

the inertia of the frontal and slanted images respectively, at the angle orthogonal
to the tilt angle, 7 + Z. The slant angle, o is given by arccos(y).

In practice, there are factors which affect the behaviour described above. These
include windowing issues and scaling of the Fourier transform when it is stretched.

In the following section it is shown that a simple windowing scheme may be used

to cancel the scaling property of the Fourier transform.

The scaling property

If F(f(z)) = F(w) is the Fourier transform of a function f(z), then

F(f (k) = 2 F(%) (@

=&
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In plain English, if the Fourier transform is stretched out by a factor &, its magnitude

decreases by k.

Windowing scheme

The windowing scheme refers to the method used to isolate patches of texture. Here
it is shown that a simple Gaussian windowing scheme leads to cancelation of the
scaling property.

Consider the image of a texture windowed with a Gaussian shown in Fig-
ure 12 (a). This windowed image was contracted by a factor of 2 in the direction
90° to give the image shown in Figure 12(b). The Fourier transforms of (a) and (b)
are displayed directly below them in Figures 12(d) and (e). The transform in (e)
differs from that in (d) in two ways: firstly, the peaks have been stretched outward
by a factor of 2 in the direction 90°. Secondly, the peaks have decreased in magni-
tude by a factor of 2 due to the scaling property. In Figure 12 (c), we see the case
where the terture has been contracted by a factor of 2 in the direction 90°, but the
window used is the same Gaussian as was used in (a). The Fourier transform of
(c) is shown below in Figure 12(f). The transforms (e) and (f) are the same, except
that the magnitudes of the peaks are twice as large in (f). This is because twice
as much of the contracted texture is visible in the windowed region. Thus, if we
compare the Fourier transforms in (d) and (f), a shift in peaks will still occur, but
the magnitudes of the peaks remain the same. In other words, the movement of
peaks is apparent, whilst the scaling property has been canceled.

By the same reasoning, we can cancel the scaling property for any factor of
contraction, not just 2, and in any direction of contraction. Therefore, as long as
the same Gaussian window is used to extract patches of texture, the new method

of comparing moments is valid.

3.1.2 A simple planewave example

Figure 13 demonstrates the method proposed so far. A planewave texture windowed
with a Gaussian is shown in (a). This represents the frontal view of some texture.

In Figure (b) we see the texture when it has been contracted by a factor of 1.6
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(f)

Figure 12: In (a) we see a texture windowed with a Gaussian. The image in (a) was
contracted by a factor of 2 in the direction 90° to produce the image shown in (b).
In (c) the terture has been contracted, but the window used is the same Gaussian
as was used in (a). Their corresponding Fourier transforms are shown in the row
below.

in the direction of 50°. This represents the texture seen from some oblique view.
The aim is to find the orientation of the second planewave. The respective Fourier
transforms are shown in (c) and (d) respectively. The inertia of the two Fourier
transforms as a function of angle of axis are shown in Figure 14, denoted I; and I5.
The dashed line depicts the true tilt angle of 50°. The intersection of the two inertia
lies on the required 50° line. Indeed, it was verified that the method of predicting
the tilt angle was extremely accurate for this particular example, regardless of tilt
angle. The parameter k£ (which leads to slant) is also accurately estimated for
the planewave example. The dash-dot line in Figure 14 gives the angle that is
orthogonal to the true tilt angle at -40°. At this angle, \/m is 1.55, which closely
matches the true multiplying factor of 1.6 — this corresponds to an error in slant
of 1.5°.

Note that another intersection is also present at about 80°, giving a false solution
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a) Image ) Contracted Image

) Fourier transform of (a ) Fourier transform of (b)

Figure 13: Planewaves and their Fourier images. The planewave in (a) represents
a frontal view of the texture and the planewave in (b) represents an oblique view
of the texture.
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Figure 14: Spectral inertia of the two planewaves. I; corresponds to the original
planewave and I, corresponds to the contracted planewave. The two curves intersect
at the tilt angle of 50°, as required. The dashed line gives the true tilt angle and
the dash-dot line gives the angle orthogonal to the tilt.
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for tilt angle. The reason for this false solution is discussed in the following section,

where it is also shown that false solutions for tilt can be easily avoided.

False tilt angles

In Figure 14 the curves display two points of intersection, and hence two candidates
for tilt angle. Here it is shown why the false tilt angle occurs, and that it can be
easily detected as false.

Figure 15 represents the peaks in the Fourier transforms of the two planewaves.

The peaks corresponding to the frontal planewave are shown as pl and p2, and the

false tilt axis |/ pl’.
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Figure 15: Reason for false tilt angle occurring. The points pl and p2 represent the
peaks in the Fourier transform of the frontal planewave. The points p1’ and p2’ are
similar but for the transformed planewave.

peaks corresponding to the contracted planewave are shown as pl’ and p2'. The
distance from p1 to the dashed axis is the same as the distance from pl’ to this axis.
The same is true for p2 and p2’. Thus the dashed line is detected as the tilt axis.
However, the same can be said for the dash-dot line, which may be falsely detected
as the tilt axis.

For any real textures this is not a problem. Firstly, as there are only two
candidates for tilt, both can be quickly tested by transforming the frontal planewave
using both candidates. Only one version will match the planewave with the oblique
view. Secondly, testing both candidates may not be necessary at all for realistic

textures; the possibility of a false tilt angle only occurs when the number of peaks
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in the Fourier spectrum is very small. Ideally the number of peaks is large as is the
case with real spectra, and this means there will only be one tilt solution for which
the inertia remains unchanged for all frequency components. At all angles other
than the tilt angle, the spectral inertia of the original image will be less than the
spectral inertia of the contracted image. This may be better understood when one
considers what takes place in the image domain; the texture is contracted in some
direction, leading to a stretch in the spectral domain, so the inertia is unaffected in

only one direction.

3.1.3 Accounting for real factors

The planewave example above works well, but it differs to real world textures.
For real images, two other factors to consider when comparing spectral inertia are

illumination and blurring.

Illumination

[Nlumination results in a scaling of the Fourier transform by some unknown amount,
which leads to a scaling of the inertia by that same amount. This is seen by referring
again to Equation 3; if the values of F'(u,v) are scaled by some S, then the inertia

I is scaled by S also.

Blur

Blurring draws energy in the Fourier transform closer to the origin, as higher fre-
quencies are suppressed. This leads to a general decrease in the spectral inertia,

however the inertia is not necessarily scaled by the same amount for all directions.

Normalisation

[Nlumination can be accounted for by inserting a normalisation step into the new
method so far: after obtaining the two inertia I; and 5 corresponding to the frontal

patch and the local patch respectively, scale I such that at all angles the scaled I
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is greater than I, except for one angle, where the two are equal. The tilt angle is
given by the angle where the inertia are equal. The slant angle is found as before.

The normalisation step also partially compensates for blur by expanding the
inertia I, such that it can be compared to I;. The algorithm is therefore robust to

some amount of blurring for anisotropic textures.

3.1.4 Finding the frontal texture

The algorithm relies on obtaining a patch of the frontal texture so that all other
patches may be compared to it. There are several approaches for doing this. If
the image is known to display some areas of frontal texture these can in theory be
automatically identified using a method such as the one suggested by Super and
Bovik [79]. They claim that the frontal texture is where v/Mm is a minimum (M
and m being the maximum and minimum values for the spectral inertia of a patch
of texture). In theory this method should work, since v/Mm can only increase as a
frontal segment of texture is slanted. However due to factors such as blurring this
method is not robust. For example, if a patch of non-frontal texture is blurred, this
decreases the magnitudes of the high frequency components which in turn decreases
the spectral inertia. If the value of v/Mm becomes lower for the blurred patch than
for the true frontal texture, an incorrect patch of texture will be identified as frontal.

After discovering the downfalls of using the above method for finding the frontal
texture, I decided that my shape-from-texture algorithm could require the user to
click on the frontal texture. This small manual input is a reasonable cost for a
fast and direct three-dimensional reconstruction of a surface. Note that the frontal
texture is often easy for a user to identify; for example, on a spotted surface, it is
easy to find a patch of near circular spots if they are present in the image. However
this method of finding the frontal texture limits the allowable input images to ones
where some frontal texture is visible, although this disadvantage also applies to
Super and Bovik’s method.

Alternatively, if no frontal texture is visible in the image, shape estimation could
still be achieved using a separate image of the frontal texture. For example, if a

brick building were photographed such that no frontal point appeared in the image,
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the algorithm could still be used, as long as an image of the frontal brick texture
can be acquired.

Clearly the best solution to finding the frontal texture requires no knowledge of
the true texture, is automatic, and works regardless of whether or not the frontal
texture appears in the image. Forsyth pointed out [16] that, if the texture is com-
posed of identical repeating texels, sets of three or more instances of viewed texels
could be used to determine the appearance of the frontal texel. If Forsyth’s method
were adapted to working with patches of texture rather than individual texels, it
could be used to replace the user interaction step of this new shape-from-texture
algorithm. However, finding the frontal texture has not been the focus of the work
in this chapter, and so this adaptation of Forsyth’s work was not implemented

although it remains an interesting and useful issue for future work.

3.1.5 Choosing the window size

Although the shape of the Gaussian window used to isolate patches remains the
same for all patches, the size of the window needs to be chosen. In theory the
window size needs to be large enough to encompass enough texture so as to accu-
rately characterise the entire texture, but not so large as to lose resolution across a
textured surface. For the experiments that follow, the window size is set manually.
What is not covered here is an algorithm that automatically sets the window size
depending on the texture, however there are several avenues one might try. Firstly,
one might try to find the “characteristic scale” (the size of the main features) of the
frontal texture using a method such as Lindeberg’s [52]. The window would be set
to a size that is larger than the characteristic scale in order to capture enough of
the texture. There is also an iterative approach, where the window size is increased
until the net change in the Fourier transform is below some threshold. The idea
can be described with the example of a spotted texture; the window begins small
and only encompasses part of a spot. As it increases in size, new frequencies are in-
troduced and the Fourier transform changes quickly until and entire spot is viewed
in the window. If the window is increased further in size, new spots enter but they

only reinforce the frequencies that are already present so the Fourier transform does
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not change a great deal.

3.1.6 Summary of algorithm

The algorithm is summarised below.

1. Begin with an image of a stationary, homogeneous texture viewed orthograph-

ically.
2. Obtain a patch of frontal texture using one of the methods in Section 3.1.4.

3. Calculate the spectral inertia I; as a function of angle for the frontal patch

using the following formula for inertia [25]:

I1(0) = %(c-l— a) — %(a —¢)cos(20) — %b sin(26) (5)

where 6 is the angle of the axis and a, b and ¢ are the second moments, given
by

a = Eu Zv U2F(u7 U)v

b=2%,>,uwwF(u,v),

¢ =%, X, v*F(u,v),

where u and v are the frequencies in the z and y directions respectively and F'
is the amplitude of points in the Fourier image. Note that Equations 3 and 5

are equivalent, but using Equation 5 is computationally much more efficient.

4. Window the image of the surface into local patches using a Gaussian window.

The size of the Gaussian window has been discussed in Section 3.1.5.
5. For each windowed patch, take the Fourier transform.

6. Calculate the spectral inertia I, for the local patch using Equation 5.
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7. Scale I5(#) such that at all angles it is greater than I;, except at one angle
where they are equal. Identify this as the tilt angle.

8. Locate the angle which is orthogonal to the estimated tilt angle. Using the

values of I; and I, at this angle, calculate k£ = \/?

9. The estimated slant angle is given by o = arccos(3).

3.1.7 Interpretation using representative ellipses

It is helpful to describe the algorithm and the normalisation process using ellipses to
represent the spectral inertia. Suppose we are estimating the tilt angle in a sample
patch of texture such as the one in Figure 16(b), and we do this by comparing it to
a patch containing the frontal texture, shown in Figure 16(a).

This comparison takes place in Fourier space. We take the Fourier transform of
each patch of texture; these are shown in Figures 16(c) and (d). For simplicity, these
figures only display the highest peaks. Then we calculate the inertia of each Fourier
transform. In Figures 16(e) and (f) we see the resulting inertia curves I; and Iy
represented as ellipses. The distance from the origin to the ellipse? in some direction
6 is equal to the spectral inertia about the axis in the direction 6. Figure 16(e) also
depicts the concept of maximum and minimum inertia, M and m respectively. The
minimum inertia m is the minor radius of the ellipse and the maximum inertia
is the major radius. Although M and m are not used in our algorithm, they are
an important part of Super and Bovik’s algorithm discussed later in Section 3.3.
The basic shape of the cloud of Fourier peaks is similar to the shape of the ellipse.
However, one should not mistakenly assume that the ellipse roughly encompasses
the cloud of Fourier peaks; rather, it lies at right angles to the ellipse that would.
Thus the direction of the minimum inertia is the same as the direction where the
cloud of Fourier peaks extends outward the most. The orientations of M and m

are based entirely on the appearance of the texture, and not on the tilt direction 7.

2In reality, the shape of the inertia curve would not be elliptical, but peanut-shaped. Ellipses
are used in this section to simply convey the idea of normalisation, although when the algorithm
was implemented, this representation was not used; I used the inertia curves directly and used a
binary search to find the scale factor for normalisation.
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For isotropic textures M = m.

In order to solve the tilt angle, we need to find the axis about which the spectral
inertia curves of the two patches are equal. This is depicted in Figure 16(g), where
the ellipses corresponding to the frontal and sample patches are superimposed. The
tilt angle is where the two ellipses just touch. This illustrates the ideal case.

In practice, we see the case in Figure 16(h) where, due to illumination, the
inertia curve has been scaled. Illumination affects only the size of the ellipse and
not it its shape. This is also true to some extent for blur if it is not too severe. I;
can be thought of as some unit inertia shape, multiplied by some factor ¢;, where
c1 is unpredictably affected by blur and illumination in the image. Similarly, I, can
be thought of as another unit inertia shape multiplied by a different factor, cy. I
can be normalised to I if it is scaled by a factor E—; Normalisation requires that Iy
be resized such that it is larger than I; in all directions, except one. To understand
why this is, consider what is happening in the image; as a frontally viewed image is
slanted under orthographic viewing conditions, the frequency components increase
in all directions except one, the direction orthogonal to tilt. Therefore we expect
the spectral inertia of the slanted image to be greater than or equal to the spectral
inertia of the frontal image in all directions.

In summary, the approach of estimating tilt angle using the intersection of the
two inertia is only accurate if an ideal texture is used. The addition of illumination
and blur require that we analyse instead the change in the shape of the inertia, and

this can only be done in a normalised framework.

3.2 Results

3.2.1 Tests using the Brodatz texture database

The algorithm was initially tested on texture patches created using the Brodatz
texture collection [5]. Two images of the same texture were compared: the first
image displaying the frontal texture, and the second image displaying the contracted
version. Examples are given in Figure 17(a) and (b). Each pair of images was

obtained using the following steps: window the centre portion of the Brodatz texture
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(a) Patch of frontal texture (b) Sample patch
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Figure 16: Normalisation of inertia, illustrated using representative ellipses.
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(a) Frontal texture  (b) Contracted texture

Figure 17: Examples of input images

image, using a Gaussian window. This gives the first image and the frontal texture.
Contract the original texture image by a factor k£ in direction 7, where k£ and 7 are
some initial test values. Window the center portion of this contracted image with
the same Gaussian to obtain the second image. When the two images were input
into the algorithm, the aim was to estimate 7 and k. Then 7 and k£ were varied to
test the algorithm under different tilt and slant angles.

The frontal texture in Figure 17(a) was contracted in the tilt direction of 50°
by a factor of 1.5 to give the patch of texture in Figure 17(b). Figure 18 shows the
spectral inertia of the frontal texture, I;, and the spectral inertia of the contracted
texture, Io. We also see the scaled I, which intersects I; at 50° giving the correct
tilt angle. The dash-dot line shows the angle orthogonal to tilt. At this angle, %
= \/% = 1.4, which is close to 1.5.

The method was tested on 111 textures in the Brodatz database where T was
varied over the range -90°, -80°, ..., +90°, and k was varied over the range 1.5, 2,
..., 4. The mean absolute tilt error was 8.0°. Slant was calculated using the angle
orthogonal to the estimated tilt angle instead of the real tilt angle to ensure fair

testing. This gave an average absolute error of 13.6°.

Reasons for error

It was found that the error values given above were heavily influenced by the fre-

quencies present in the textures. Figure 19 displays the mean error taken over all
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Figure 18: Spectral inertia of the two example textures. I; corresponds to the frontal
texture and I, corresponds to the contracted texture. The scaled I, intersects I;
close to the true tilt angle of 50° shown by the dashed line. The dash-dot line gives
the angle orthogonal to tilt. The values of I; and I, at this angle lead to an accurate
estimation of slant.

slant and tilt angles, versus the Brodatz number. The textures with the highest er-
rors are labeled. These are the textures numbered D16, D21, D38, D49, D79, D105
and D106. Observation of the entire set of Brodatz textures (see Appendix A) re-
veals that these highlighted textures exhibit the highest frequencies, with little low
frequency content. As a quick comparison, the highlighted textures are shown in
the top row of Figure 20 and some textures that performed far better are shown in
the bottom row.

It was found that textures that essentially only contained high frequencies per-
formed badly because contracting them resulted in even higher frequencies, cutting
out much of the texture’s detail. From a spectral point of view, the high frequencies
were more prone to the affects of aliasing, and so with little low frequency content,
a comparison of the two Fourier transforms was not meaningful.

The way to deal with these textures is to increase the resolution. Using closer
views of the texture and a smaller window size, the algorithm more easily tracks
the changes in the texture. In our experiment, the resolutions of the textures were

fixed according to the image database [70].
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Figure 20: Frequencies affecting performance.

Another factor contributing to error is inhomogeneity. Several of the Brodatz
textures were not very homogeneous, which meant that the patch of contracted

texture contained elements not seen in the patch of frontal texture.
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3.2.2 Tests using images of real objects

The robustness of the algorithm was demonstrated on images of real objects. To
begin, the images were segmented to remove the effects of the background. This
was done manually although a number of algorithms exist that do this [68, 36,
69, 84]. The background was set to be black. Patches were extracted from the
textured surface such that the locations of all patches formed a regular grid. Some
of these patches included part of the sharp border between the texture and black
background, something so far unaccounted for in our description of the algorithm.
In general this problem might be dealt with by either (i) having knowledge of the
orientation along the border (via some other shape cue such as shading) so that
this does not need to be determined using texture, or (ii) simply not calculating
the orientation if part of the border appears in any particular windowed patch.
In the second case, the surface cannot be reconstructed along the border, and the
algorithm returns only the shape of the object inside the border.

Under certain conditions however, the algorithm may be used for all patches
including those containing part of the border. In the experiments on real images
that follow, the objects that were photographed have the property that its surface
slants away from the camera at an angle of 7 along its border. It turns out that the

algorithm satisfactorily deals with such surfaces as shown in the following section.

Border of texture

Along the texture border, the algorithm returns a slant angle of close to § and a
tilt angle that is normal to the border; often this is exactly what we require, and
some examples are given later. This result for slant and tilt at the texture border
can be explained as follows. For patches containing part of the border, the sharp
edge dominates the Fourier transform. An example is shown in Figure 21(b), where
the highest values lie along a line that is orthogonal to the texture border shown in
Figure 21(a). A plot of the inertia I, is shown in Figure 21(c) and it demonstrates
that the largest moment is far greater than the smallest moment. The frontal inertia

I; has a much smaller range than I;. As before, normalisation involves scaling I

such that at all angles it is larger than I; except in one direction. Given the relative
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flatness of the I; curve, the algorithm detects the tilt direction as the direction
that corresponds to the lowest point of I,. This is the direction that is along the
bright line in the Fourier transform, in other words the direction orthogonal to the
texture border. To calculate slant, the algorithm analyses the inertia at the angle

orthogonal to tilt, depicted with a dashed line in Figure 21(c). The contraction

_ Scaled I
k =,/ B
=,/ where n; >> ns
n2

=ng where nzg >> 1

factor £ is given by

and the slant ¢ is given by
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In summary, at the border we often require a tilt angle orthogonal to the edge
and a slant angle of 5. Where this is the case it is reasonable to apply the algorithm

to images where the texture has been segmented with a sharp border.

Golfball example

Figure 22 shows an example with a golfball. The original image is shown in (a). The
golfball texture was segmented manually from the background to give the image in
Figure 22(b). The image was windowed into local patches to calculate the slant
and tilt in each patch. Also in (b) are the locations of patches showing some frontal
texture and slanted texture. The circles depict where the standard deviation of the
windowing Gaussian is unity. The corresponding patches used by the method are
shown in (c¢) and (d).

The resulting slant and tilt are depicted as a needle diagram with tilt giving the
angle of the needle and slant affecting the length of the needle. This is shown in
Figure 23(a). Since it does not make sense to calculate the slant and tilt outside of

the texture, the slant was set to zero for all background pixels.
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(a) A patch containing (b) log-Fourier
some of the border transform of (a)

Inertia

Angle

(c) Inmertia I3 of (b) and I; of some frontal patch (not shown). Since I; is rather
flat compared to the scaled I, the tilt angle (shown as the dashed line) is
estimated to coincide with the highest value of I5. This angle is normal to the
texture border, as required.

Figure 21: Effect of texture border

The algorithm so far determines the tilt angle only up to the well-known tilt
ambiguity. This ambiguity is demonstrated by the fact that under orthographic
projection, it is impossible to distinguish between a concave textured sphere and
a convex one, based on texture alone. In terms of the needle diagram, we do not
know which end the the needle is the point. For this sort of problem, a smoothness
constraint is often used. For example one might try to avoid large second derivatives,
although this approach was found to be unreliable. Lobay and Forsyth [53] have
found that the ambiguity can be solved satisfactorily by choosing tilt values that
do not allow the surface height to change too rapidly. In the golfball example and
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(a) Original image (b) Segmented image

(c) Patch showing (d) Patch showing
frontal texture slanted texture

Figure 22: Test on an image of a golfball.
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(a) Needle diagram (b) Mesh surface (c) Side view

Figure 23: Shape estimate of golfball

in the real examples that follow, I have simply used the fact that the needles point

outward to solve the tilt ambiguity. Clearly this is not applicable to multimodal

surfaces and in these situations one could employ Lobay and Forsyth’s approach.
The map of slant and tilt angles was then used to build a surface using Kovesi’s

Shapelet method [43], seen in Figure 23(b) as a mesh surface. The original image



40 CHAPTER 3. A METHOD FOR ORTHOGRAPHIC VIEWS

of the golfball was then texture mapped onto the surface to give a 2%-D recon-
struction of the golfball, which could be viewed from new angles. A side view is
shown in Figure 23(c). This view has the same orientation as the mesh surface in

Figure 23(b).

Accuracy

One expects a reasonable amount of error due to the fact that the texture is not
perfectly homogeneous. The surface spots are hand-drawn and in some areas, not
very circular. Since the golfball is spherical, is was possible to calculate ground
truth values for slant and tilt. The mean slant error was 10.4° and the average tilt
error was 16.6°. Analysis showed that the worst tilt errors occurred when the slant
was low i.e. in areas closest to the frontal point. When the slant is zero, the tilt
angle is undefined, but in areas nearby of low slant, the tilt can be highly inaccurate
without changing the surface reconstruction dramatically; imagine a patch where
the surface is near frontal, so that the needle in a needle diagram points almost
directly out of the page. We can go so far as to reverse the direction of the tilt
without substantially altering the surface. Figure 24 is a graph of the tilt versus
true slant. It verifies that at low slant angles, the tilt error can be very inaccurate,
showing an almost random spread.

Errors occur in the surface reconstruction too. For example, due to the nature
of the Shapelet method, slant angles of exactly 90° are not achieved on the surface

at the texture border.

Other examples

The algorithm was tested on other textured objects seen in Figures 25 and 27. With
the cheetah example (Figure 25), shape is calculated only for areas with the spotty
texture. In all other areas slant is set to zero. This is why in Figure 26 the cheetah’s
head is flat.

The estimated shape of the body of the cheetah is dependent on both the effect
of the border and the texture foreshortening. Referring to Figure 26, we see that

at points A and C the surface is relatively flat, but that at point B the surface
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Figure 24: Large errors for tilt are encountered at areas of low slant.

is slanted due to the texture being foreshortened. At point D, and all along the
cheetah’s back, the surface slants away from the camera due to the effect of the
border.

For the pear and strawberry examples (Figure 27) the effect of the border plays a
more important role than the texture. Reasonable shape estimates are achieved even
though the pear’s texture contains mostly high frequencies (earlier in Section 3.2.1
we saw that these kinds of textures usually do not give good results) and the

strawberry’s texture contains specularities.

3.3 Comparison with Super and Bovik’s method

I chose to compare the new method to Super and Bovik’s [79] because their method
is relatively well-known and recent and uses the same assumptions as the new
method regarding texture and viewing geometry.

Essentially, Super and Bovik’s method evaluates slant and tilt by looking at
changes in the spectral moments, as in the new method. However, there are many
differences between their method and the new method. The change in moments is

characterised entirely by the maximum and minimum moments and «, the angle
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(a) Original image (b) Segmented image
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(e) Mesh surface (f) Projection of image onto surface

Figure 25: Results from performing shape-from-texture on the image of a cheetah.

of the axis about which the minimum moment is achieved. In contrast, the new
method uses the entire curve of spectral moments versus angle instead of only two
points on that curve. Another difference is the spectral representation used; Super

and Bovik use a Gabor transform and the new method uses the Fourier Spectrum.
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Figure 26: New view of cheetah.

Although the Gabor transform gives the most efficient image reconstruction in
terms of balancing the resolution in the image and spectral domains, it is argued
that the finer spectral resolution of the Fourier transformation is better at tracking
the movement of spectral peaks, and hence the changes in spectral moments.
Another difference between the algorithms is the somewhat unnecessary ability
of Super and Bovik’s method to return the surface orientation at every pixel, al-
though in theory this resolution can easily be reduced to improve processing speed.
The new algorithm was not designed to be used on every pixel (although one might
do this) but instead to extract and process patches at spatial intervals that are not
unreasonable for the image size. For this reason, in Section 3.3.2 the results for the
new method appear rather blocky compared to the results for Super and Bovik’s

method. A comparison of the speeds of the algorithms is presented in Section 3.3.2.

3.3.1 Overview of Super and Bovik’s method

A viewer centered (z,y,2) co-ordinate system is adopted, where the z-y plane is
the image plane, and the optical axis is the —z axis. See Figure 28 (adapted from
Super and Bovik’s paper [79]) .

The local surface (zs,ys, zs) coordinate system is defined as having z;-axis as
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(a) Segmented image (b) Needle diagram

(e) Segmented image (f) Needle diagram

(g) Mesh surface (h) New view of strawberry

Figure 27: Results from performing shape-from-texture on a pear and strawberry.

the surface normal at the point on the surface and the z,-axis so that its projection
points in the direction of the apparent surface gradient. The y,-axis is directed to

give a right-handed orthogonal coordinate system. The tilt 7 is the angle between
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Plane tangent to surface
Image plane

Figure 28: The coordinate systems used in Super and Bovik’s algorithm.

the z-axis and the projection of the z;-axis onto the image plane. The slant o is
the angle between the z,- and z-axes.

Surface texture is characterised by the response of the image to filters of various
frequencies. The local energy spectrum, A, is the result of convolving the image,

f(x) with the filter h(x;u), and taking the absolute value:
A(u;x) = |f(x) * h(x; u)| (7)

where x = (z,y) gives the image coordinates and u = (u,v) gives the spectral
coordinates.

The filter h(x;u) is a two-dimensional Gabor filter, centered about u. A two-
dimensional Gabor filter is a Gaussian-restricted planewave; for more information
regarding Gabor filters, see the paper by Lee [48].

The second-order moments of the energy spectra are given by:

a(x) = Y;ui(x)Af(x),
b(x) =23 ui(x)vi(x)A2(x), (8)
c(x) =307 (x) A (x).
where 7 indexes the samples in the spectral domain.
The canonical moments, M and m are the crux of Super and Bovik’s algorithm.
These, along with axis of least second moment, «, are used to directly calculate

the tilt and slant. The canonical moments, M and m are the maximum and the

minimum second moments respectively, and were depicted in Figure 16(e). M, m
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and « are calculated from a, b and ¢ according to the following equations.

M=%(a+c+\/m),
m=1L(a+c— B2+ (a—0)?), 9)

o = Larctan(-2).

Super and Bovik’s algorithm is summarised by the following steps.

1. Convolve the image with Gabor filters to obtain the local amplitude spectra,

A, according to Equation 7.
2. Calculate the image moments, a, b and ¢, according to Equation 8.
3. Compute M, m and « according to Equation 9.

4. Determine the frontal point, where v/ Mm is minimised. Set My = M and
ms = m. M, and mg are the canonical moments at the surface, or the frontal

moments.

5. The slant o and tilt 7 are then given by?:

Msmg
Cos o = /el
_ 1 1
T = a £ 5arccos A, a =+ ;arccos A + , (10)

c0824+1)(M+m)—2(Ms+ms)
sin?0(M—m) :

where \ = {

The slant angle is computed with no ambiguities, as it is required to be within
the angles 0 and +90 degrees. However, the tilt angle has two ambiguities: one is the
fundamental tilt ambiguity of £, seen as the two alternatives for 7 in Equation 10.
The other ambiguity is a result of the mathematical derivation, manifesting as the

=+ sign in Equation 10.

3The full derivation for these equations is given by Super and Bovik [79]
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3.3.2 Super and Bovik’s results
A synthetic image

To compare Super and Bovik’s algorithm to the new algorithm, a very simple test
image was initially used to highlighted strengths and weaknesses in the two al-
gorithms. The input image was a planewave with varying frequencies, shown in

Figure 29. There are four regions in the input image where the wavelengths in

Figure 29: A simple test image

pixels are 16.6, 8.3, 5.6 and 16.6 from left to right. The image was used to test
whether the algorithms could accurately estimate the amount of foreshortening in
each region compared to the first region which was deemed the frontal region.

In order to compare the two algorithms, the filter bank for Super and Bovik’s
method had to be carefully chosen, as well as an appropriate window size in the
new algorithm; a ‘bad’ choice for either of these could result in sub-optimal per-
formances. Therefore these were chosen in a way that made sense. For the bank
of Gabor filters, the largest and smallest filter had wavelengths of 20 pixels and
5.4 pixels respectively, which encompass all of the frequencies in the image. These
filters are shown in Figure 30. There were six different wavelengths all together,
giving good coverage of the spectral domain. Four evenly-spaced orientations for
the filters were used. The size of window used in the new method was required to
be large enough to view the lowest frequency in enough detail while being small
enough to give a good resolution across the image. The Gaussian window chosen
had a standard deviation of 2.67 pixels, shown in Figure 31.

Tilt was calculated correctly up to the tilt ambiguity by both algorithms. A
comparison of the estimated slant is given in Figure 32. This figure shows how

slant varies with increasing x-coordinate, when the y-coordinate is set to be halfway



48 CHAPTER 3. A METHOD FOR ORTHOGRAPHIC VIEWS

N

Figure 30: Gabor filters used with first test image. The real part is shown.

Figure 31: Gaussian window used for first test image

down the image (although any y-coordinate might have been chosen). The graph
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Figure 32: Comparison between the two algorithms. While Super and Bovik’s
method performs better at texture borders, the new method is better able to esti-
mate slant where the texture is constant.

demonstrates that the new algorithm more accurately estimates slant in all areas

except at the borders between the regions of different frequencies. These borders are
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discussed later. One might expect the new algorithm to generally be more accurate
for several reasons. Firstly, the windowed Fourier transform samples the spectral
domain with constant weight. In contrast, when using the Gabor transform one
attempts to choose filters that sum to give a constant sample of the spectral domain.
In reality these filters do not sample with exactly constant power. Secondly, the
windowed Fourier transform tracks the movement of spectral peaks in more detail
than the Gabor transform, the cost of which is a blockier resolution in the spatial
domain.

Several other filter banks for Super and Bovik’s algorithm were tested to try to
improve the accuracy of the slant, however none of these improved the accuracy
shown in Figure 32. Indeed, a characteristic of Super and Bovik’s algorithm is
that it tended to underestimate slant, as was noted for several tests such as the
one depicted in Figure 33. The input image of a cylinder shown in Figure 33(a)
was used as an initial test of my implementation of Super and Bovik’s algorithm.
However no choice of filter bank was able to give a better result for slant than is

shown in Figure 33(b), where the estimated slant is always lower than the real slant.

It was noted that Super and Bovik’s algorithm performed better where the
texture changed abruptly in frequency. This is because in the new algorithm, the
window used to extract patches encompasses part of both frequencies on either side
of the transition. This would not be a problem so long as abrupt transitions do not
occur, and even if they do, the new algorithm simply estimates slant and tilt to be
values that are between the true values either side, which makes good sense under
the circumstances. Real life textures do not generally display stark transitions in

slant, for example any smooth surface would not produce this problem.

A real image

Super and Bovik’s algorithm was tested on the image of the golfball previously seen
in Section 3.2.2. When encountered previously, the image of the golfball displayed
a sharp border between the texture and background, a result of setting the back-

ground to black. Super and Bovik’s algorithm did not work when used with this
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Figure 33: Super and Bovik’s algorithm tested on a synthetic cylinder. The esti-
mated slant tends to undershoot the real slant, as shown in (b)

image, because the algorithm is not designed to be used with such segmented im-
ages. Therefore, the input image is the original image before segmentation, shown
in Figure 34. Values for slant were set to be zero in the background as a final step,
since it does not make sense to calculate these values outside of the golfball texture.
Again, the filter bank was carefully chosen to give a sensible, uniform coverage of
the frequencies present.

The calculated slant is shown in Figure 35(a). The black patch in the center is
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Figure 34: Input image

an artifact of the algorithm. In areas where the texture is close to frontal M, x m
may be larger than M x m, even if marginally. Remembering that M, and m are
the frontal moments, we expect them to be always smaller than all other M and m
since the texture is contracted in all areas except where it is frontal, increasing the
frequencies and increasing the moments. However due to noise and small amounts

of inhomogeneity it turns out that Aﬁ;—:’f may be slightly larger than unity. Slant

Mgmg

ome) which results in a complex value for slant.

is calculated using o = arccos(
Super and Bovik do not specify what to do in these cases; the most sensible step is to
set slant to zero since MMS—ZS is most likely to be larger than unity at frontal locations.
This is the reason for the black patches in Figure 35(b) and is a disadvantage of
the algorithm. In contrast, the new algorithm never returns complex values, but
instead returns the best guess for slant from the set of real angles. The needle
diagram in Figure 35(a) shows that tilt is calculated only to a fair accuracy; the
needles generally point outward but errors are seen in patches.

A quantitative comparison of the two algorithms is given in Figure 36(a) where
the slant along a profile is shown. The values from Super and Bovik’s algorithm
clearly show inaccuracies where the texture is almost frontal, and complex values
for slant were calculated. Also the slant tends to drop off as the true slant increases.
This phenomenon was seen in the earlier example of the synthetic cylinder, and is
also in examples in Super and Bovik’s paper [79].

In comparison, slant values from the new algorithm tend to be more accurate.

The ‘blockiness’ is due to the spacing between patches of texture, and may be
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(a) Slant estimated by Super (b) Needle diagram
and Bovik’s algorithm

Figure 35: Results from Super and Bovik’s algorithm tested on the golfball image.

reduced by taking closer samples, the cost of which is an increased processing time.
The greatest error is seen near the y coordinate equal to 75, depicted with a vertical
line in Figure 36(a). This error is due to the specularity on the golfball where the
texture is not visible. Figure 36(b) shows the profile on the golfball, and labels the
point where y = 75.

Speed of algorithm

Both algorithms were implemented in MATLAB version 6.5 [31], running under
Linux on an Intel Pentium 4 2400 MHz CPU. A general observation is that both
algorithms were completed within a reasonable amount of time, although this was
highly dependent on the choice of filters and window sizes and the efficiency of the
algorithms. Super and Bovik’s algorithm processed the image of the golfball in
around 32 seconds, however this involved returning a value of slant and tilt for all
pixels. In theory, this resolution could have been reduced for a faster processing
time. Most of the algorithm’s time was spent creating the Gabor filters and convolv-
ing using them. To increase speed, convolution was implemented as a multiplication
process in the spectral domain. As mentioned earlier, the new algorithm was not
run over every pixel since this would take too long and was not necessary for shape
estimation as long as the number of pixels between estimated slant and tilts were

not too large. It was possible to keep the running time to around 7 seconds when
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Figure 36: Comparison of calculated slant

the slant and tilt were calculated at intervals of ten pixels. This spacing was more

than sufficient to recover the shape of the golfball.
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3.3.3 Discussion

After testing both algorithms on several images, the following observations were

made.

e Super and Bovik’s algorithm is highly non-robust in areas where the texture
appears close to frontal. As previously seen, small amounts of noise can cause

the algorithm to return complex, and hence unusable, values for slant.

e While neither algorithm can avoid the m-shift tilt ambiguity, Super and Bovik’s
algorithm has an additional ambiguity due to the mathematical equations used
to calculate tilt. While the w-shift ambiguity is solvable by methods such as
suggested by Lobay and Forsyth [53], the additional ambiguity (seen as the
+ sign in Equation 10) requires extra information, according to Super and
Bovik’s paper [79]. This information may come from knowledge of the true
surface orientation at one point, another process such as shape-from-shading,
or constraining the type of surface. In my particular experiments with Super
and Bovik’s algorithm, the additional ambiguity had little effect due to the
textures used; in the case of the two synthetic examples and the one real
example, the tilt angle 7 ought to be equal to «, the angle about which the
smallest moment is achieved — as is the case with a sinusoidal (stripy) texture
and spotted texture. In experiments A (from Equation 10) was found to be

always close to one, and thus

T ==+ 1arccos A
~ a = 3 arccos(1)
=a=+0

=«

as expected. However for general textures this ambiguity would need to be

solved by some means.

e As pointed out earlier, Super and Bovik’s algorithm tends to return slant

values that are lower than real slant. Reasons for this have been discussed.
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3.4 Conclusions

A new algorithm has been presented that solves shape-from-texture for homo-
geneous, stationary textures viewed orthographically. Tests using the Brodatz
database of textures were performed to verify that for local patches of texture the
algorithm behaved as theory suggests. The results were quantitatively good, with
errors attributed to textures featuring only high frequencies, since these textures
lost a lot of detail due to the slanting process, and textures that did not satisfy the
assumption of homogeneity.

For the algorithm to be tested on real images border effects were taken into
consideration. It was shown that the algorithm returns along the texture border a
slant angle of 7 and a tilt angle that is orthogonal to the border. This made the
algorithm usable for surfaces whose borders slant away from the viewer, as is the
case for many textured objects.

When the algorithm was tested on real images, it was found again to give good
quantitative results for the image of a golfball. For the test image of a cheetah it was
noted that the algorithm’s good reconstruction was the result of two behaviours:
(i) away from the texture border, the algorithm performed as expected in the same
fashion as was verified by the earlier trials on Brodatz textures, and (ii) using the
texture border to enforce a slant value of 7 and tilt angle that is orthogonal to the
border.

When the new algorithm was compared to Super and Bovik’s algorithm, a test
image revealed that while the latter performed better at borders between different
slant values, the new algorithm was more accurate everywhere else. When Super
and Bovik’s algorithm was applied to the image of the golfball, it was found to
give complex values for slant in areas near the frontal texture due to noise and a
small amount of inhomogeneity. In comparison, the new algorithm gave real, hence
usable, values for slant. The new algorithm also gave more accurate results for slant
and tilt. The main disadvantage of Super and Bovik’s algorithm is that it requires
another source of shape information other than the texture to resolve an ambiguity

in the tilt angle, whereas the new method does not.
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Chapter 4

Finding The Affine

Transformation

The method in the previous chapter implicitly solves for only two of the compo-
nents of the affine transformation between textures (the slant and the tilt). It was
assumed that no scaling was involved since there are no perspective effects for the
orthographic view. The rotation component was also ignored since the texture was
assumed to be stationary. Translation effects are not considered because only local
patches of texture are compared. However, if the texture is not assumed to be
stationary or viewed orthographically, the scale and rotation components must be
solved along with the slant and tilt.

This chapter presents a method that solves the affine transformation (ignoring
translation components) between two images of the same texture. This method
was developed to be used as part of the shape-from-texture algorithm that will
be described in Chapter 5. This chapter outlines the problem of calculating the
affine transformation between textures and shows why previous techniques cannot
be used. I also discuss the many uses of this technique, giving examples where it is

used in object re-texturing and the placement of an object in a scene.

o7
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4.1 Outline of problem

This work addresses the following problem: we have two images of some texture,
but they are not necessarily the same portion of the texture, and they are viewed
from different angles. Either image may be affine transformed such that its texture
has the same orientation as in the other image. The aim is to calculate this affine

transformation. (See Figure 37).

(a) First input (b) Second input (c) First image
image image transformed

Figure 37: Computing the affine transformation between two textures. The image
in (a) has been transformed to give (c) such that the texture is viewed with the
same orientation as in (b).

A different, but related problem exists: finding the affine transformation be-
tween two images of the same planar object or surface. A common approach to
this problem is to identify “interesting” points (such as Harris points [21] or SIFT
points [58]) in both images and to match corresponding points after assigning some
feature vector to each point. The affine transformation is then found such that
it minimises some criterion such as distance between points after one set has been
transformed. This approach cannot be used in this current work with textures since,
in general, we are dealing with two different portions of the texture, and hence there
is no guarantee that robust point correspondences can be established. For example
see Figures 38(a) and (b) which show two different portions of the same texture. In
Figures 38(c) and (d), the images have been superimposed with crosses that show
detected Harris feature points. If the points in the first image are matched with
points in the second image, they will not be related by some affine transform and

so the feature point method would not work in this example. Feature matching
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Figure 38: Two different portions of the same texture. Figures (¢) and (d) show
where features have been found in (a) and (b) respectively.

is also inherently difficult on textures because, by definition, they have repeating
structures.

This chapter outlines a new method that is rather different to feature methods;
firstly, both images of the texture are transformed into an isotropic state so that
they differ only by a rotation and scale. The required rotation is calculated which
then allows us to construct the affine transformation up to scale. Since it does
not make sense to consider the translation part of the affine transformation, this
component does not need to be calculated. The method does not require that we
input corresponding regions of texture i.e. the pair of input texture regions may be

of any shape and may contain a different number of texels.

4.2 Relevant work

A number of methods have been used to estimate the affine transformations between
textures. Many of these are frequency domain techniques that essentially track the
movement of spectral peaks to recover the transformation. Ribeiro, Worthington
and Hancock [72] match corresponding peaks in two spectral images according to

their ordering of energy amplitudes. In practice however, this process of matching
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corresponding peaks is made difficult by noise and aliasing, which alter the mag-
nitude, and hence the ordering, of peaks. Malik and Rosenholtz [61] developed
a method for estimating the affine transformation between two nearby patches of
texture on a surface. The method uses differential analysis to produce a system
of constraints that is solved iteratively. Their method relies heavily on there be-
ing little change between texture patches and therefore cannot be used to solve for
example the case shown in Figure 37. The new method presented in this chapter
will work even if there is a large difference between the two textures. Irani et al.
proposed a method for calculating the affine transformation between planes [32],
and like this new method does not require that point correspondences are explicitly
computed. However their method requires that the input images are of exactly the
same plane, and hence cannot be used in this current work. Krumm and Shafer [46]
find the transformation between textures by testing every combination of slant and
tilt from a discrete set. Their method is computationally expensive, especially since
a fine search in the slant-tilt space is required for an accurate estimated transfor-
mation. Sato and Cipolla [73] developed a method that uses the first, second and
third moments of the edge orientation to estimate the affine transformation. In
their method, features must be detected, but correspondences between the features
need not be made. The new method presented in this chapter does not require

features to be detected at all.

4.3 The method

Starting with two images of the same texture that has undergone two different
affine transformations (for example see Figures 39(a) and 39(b)), the method aims
to find the affine transformation between the two images. The main idea is to firstly
transform each image such that the texture is isotropic. This idea was influenced
by the work of Schaffalitzky and Zisserman [75], who transformed textured regions
to an isotropic state in order to assign an affine invariant feature descriptor.

Textures are made isotropic by firstly calculating the second moment matrix of
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Figure 39: Basis of algorithm. The original images in (a) and (b) are made isotropic
to give (c) and (d) respectively. The latter pair differ by a scale and rotation.

each texture. The second moment matrix of a region {2 with intensity I is given by

Q

M= /[ VU)®V{
INCEACET L 1,1,

where I, and I, denote derivations in x and y respectively. This matrix may be
represented as an ellipse, as superimposed onto Figures 39(a) and 39(b). The ellipse
is locus of distances x from the centroid that satisfy x'Mx = k where k is some
constant.

The transformation A that makes the region isotropic is required to satisfy
ATA = M. Since M is always positive definite, one solution for A is the square

root of M given by

VA 0
A=v| Y™ V7 (11)
0 VA
where A\; and )y are the eigenvalues of M, and V is the matrix whose columns are
the corresponding eigenvectors of M.

Figures 39(c) and 39(d) show the isotropic versions of the textures, where as

expected the second moments are now represented as superimposed circles.
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4.3.1 Finding the rotation

The textures in Figures 39(c) and 39(d) differ by a scale and rotation, and the next
step of the algorithm is to calculate the rotation. This is done by computing the
Fourier transform of each isotropic texture (to eliminate any translation effects),
as shown in Figures 40(a) and (b) where the Fourier transforms of Figures 39(c)
and 39(d) are displayed. Recall that rotating any image results in an equivalent
rotation in its Fourier transform, but scaling an image results in the inverse scaling
of its Fourier transform. Therefore Figures 40(a) and (b) differ by only a scale and
rotation.

Each Fourier transform is then converted to polar coordinates, as shown in
Figures 40(c) and (d), so that the rotation between the Fourier transforms is seen

as a translational shift. The next step is to take the mean along each column of

theta

r

(c) Polar transformed version of (a)

(d) Polar transformed version of (b)

Figure 40: Finding the rotation angle. Figure 40(a) and (b) show the Fourier
transforms of Figures 39(c) and (d) respectively. Their polar transforms, shown in
Figure 40(c) and (d) exhibit a translational shift with respect to each other, as well
as a scaling in the direction 7.

Figures 40(c) and (d) to eliminate the effect of scale. This produces two 1-D signals
that are similar, except that one signal is shifted in the #-direction with respect to
the other signal. A correlation is used to calculate the shift between the two signals

which then gives the rotation angle between the textures.
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4.3.2 Finding the scale

As mentioned, this work does not include calculating the scale since it is not required
for the shape-from-texture algorithm that will be described in Chapter 5, however
in this section we outline ways that the scale may be calculated, without having
tested all of these methods.

One obvious approach might be to use the second moments of the two isotropic

: . . Sl 0 SQ 0
images. If the second moment matrices of the images are and

0 Sl 0 SZ
one might imagine that the scale factor between the two images is g—; or g—‘f however

in practice this behaviour is rather affected by illumination; increasing the bright-
ness of an image increases the magnitudes of the peaks in its Fourier transform. This
in turn increases the second moments. Blurring also affects the second moments
since it decreases the magnitudes of the high frequency components, decreasing the
second moments.

Another approach might be to use log-polar transforms for the estimation of
scale. However, an experiment with this approach implied that it was not robust;
the responses of log-Gabor filters [14] were used to try to estimate the scale via the
frequency domain. The problem was that it was difficult to get sufficient resolution
in the frequency domain from the filters. A very large number of narrow bandwidth
filters would have to be applied, and even then if the actual scale change fell between
filter centre frequencies an inaccurate estimate of scale would result.

One approach which might be applied is influenced by Lindeberg [51], who
uses a bank of normalised Laplacian filters on an image and finds which gives
the strongest response. The size of this filter corresponds to the size of the main
underlying structure of the image. For example Lindeberg uses this method to
detect the size of blobs in an image [52]. This is similar to Lowe’s use of difference-
of-Gaussian filters [58] to establish the scale associated with each feature. The
shape of the difference-of-Gaussian is almost identical to the Laplacian although
they differ by a scale factor — which actually corresponds to the scaling factor
proposed by Lindeberg that ‘normalises’ his filters. While this approach has not

been used in this work to estimate the scale factor, results in the literature suggest
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that it would be successful. This is a natural area of future work.

4.3.3 Summary of algorithm

To summarise, the algorithm that estimates the affine transformation between tex-

tures up to scale is given by the following steps.

1. Begin with two images I and .J displaying the same texture that differs by an
affine transformation. Calculate the transformation T; required to convert I

into its isotropic version I;,. (See Figure 41.)
2. Similarly, calculate T3 that converts J into its isotropic version J;s,.

3. Calculated the rotation angle between I, and J;s, using the method above.

Set T2 to be the matrix that rotates by this angle.

4. Then, according to Figure 41, the transformation from I to J is Ty ToT3 .

make isotropic via T, similarity transform T, make isotropic via T,

—_— , — = ] = J

Figure 41: Finding the affine transformation between two images ¢ and j of the
same texture.

4.3.4 Details of implementation

The following steps were required to make the algorithm robust.

e Before calculating the Fourier transforms of I;;, and J;s, these images were
windowed with a 2-D circular Gaussian to suppress the effect of the border
of the texture. For example, differences in pixel values between the right and
left edges manifest as high frequency components in the Fourier Transform,

if the windowing process is not implemented.

e After transferring the Fourier transforms to polar coordinates, the top rows
(corresponding to the low frequency data in the original Fourier transforms)

were deleted to stop the low frequency data from dominating the calculation
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of the mean along each column. Precisely what defines a frequency as ‘low’
has not been thoroughly investigated. For my experiments, the first 20% of

rows were deleted since this gave a satisfactory performance.

e The scalloped bottom edge of the polar transformed Fourier Transforms seen
in Figure 40(c) and (d) is accounted for simply by not including these values

in the calculation of the mean in each column.

e Finally, after computing the mean in each column to produce a signal for each
Fourier Transform, these signals are centered at zero and scaled to the same

range before correlating them.

Due to the symmetric nature of the Fourier transform, the rotation can only be
calculated up to a shift by 7. This manifests as an initial rotation of 7 applied to
the image 7 as part of the estimated affine transformation. This can in theory be
avoided by producing two versions of the transformed 7, one with the initial rotation
by m and one without. These two versions may be compared to the destination
texture j to see which is correct. For the work described in Chapter 5, this rotation
by m was never an issue, since the method was altered to be used on individual

texels instead of patches of texture, thereby avoiding the Fourier transform.

Ambiguities

In some cases, an ambiguity occurs when calculating the similarity transformation,
however it turns out that this ambiguity is inherent in the task of calculating the
transformation from one texel to another when scaling and slanting are involved.
The ambiguity is not due to the method used to solve the task. The ambiguity
occurs whenever the isotropic version of a texel exhibits rotational symmetry, as
demonstrated by the example in Figure 42. Even if the texel in Figure 42(a) is
known to be frontal, and the texel in Figure 42(b) is some affine transformed version,
we cannot tell whether (i) the frontal texel has simply rotated about its normal axis
and decreased in size due to increased distance from observer, or (ii) the frontal texel
has slanted in the vertical direction, whilst keeping its distance from the observer

constant, or (iii) the frontal texel has undergone some other combination of rotation
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-

(a) Some frontal texel (b) An affine transformed version

Figure 42: Ambiguity in affine transformation between texels. Even if the texel
in (a) is known to be frontal, and the texel in (b) is known to be some affine
transformed version of (a), it is still impossible to calculate the affine transformation
between the two.

and scaling. Therefore there are infinite possibilities for the affine transformation
between these two texels, however this is only the case for ellipses.

Other examples give a finite number of solutions. The rectangle in Figure 43
gives four possibilities for the affine transformation from the texel in (a) to the one
in (b). This is because without more distinguishing features it is impossible to tell
which of the four sides of the rectangle in (a) correspond to each of the four sides

in (b). In summary, the ambiguity discussed here occurs whenever the isotropic

(a) Some frontal texel (b) An affine transformed version

Figure 43: An ambiguity with finite possibilities

version of the texel exhibits rotational symmetry and the frontal texel may undergo
any combination of rotation, scale and slant. Some other source of information or

constraints may help.
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4.4 Results

4.4.1 Tests with Brodatz textures

To test the algorithm, pairs of images were created using the Brodatz textures [5].
Random affine transformations were applied to the textures to create the pairs

shown in the first two columns of Figure 44. Using these pairs of images, the
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Figure 44: Results of tests on Brodatz textures. The first and second columns are
input images. The third column shows the affine-transformed version of the first
column such that the texture resembles the second column, up to scale.

algorithm estimated the transformation from the first image to the second. The
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last column of Figure 44 shows the transformed versions of the first column, such
that the textures approximate those in the second column, up to scale.

The estimated affine transformations were then compared to the true affine
transformations. An affine transformation T may be decomposed via singular value
decomposition [55] into

T =UDV"
=(UDUYH)UVT

where U and V are orthonormal matrices and D is a diagonal matrix. The decom-

(12)

position may be interpreted as such: the image is firstly rotated by U V'. The
image is then rotated by U7, stretched in the coordinate directions by D then ro-
tated back by U. The net effect is a slant operation in some tilt direction followed

by an isotropic scale. If rot(z) is a matrix that rotates by x we can rewrite this as

T =rot(—7) m0 rot(t) rot(6) 50 (13)
01 0s

where s is a scaling factor, & is a multiplying (contraction) factor related to slant,
7 is the tilt direction and @ is the initial rotation angle.

For this particular experiment, the estimated transformation is only computed
up to scale, and so both it and the real transformation were scaled such that the
first entry in their matrices was unity. The matrices were then decomposed via
singular value decomposition to give values for k, 7 and 6. The errors are shown
in Figure 45. A couple of points are noted: firstly, one expects some error in the
estimated affine transformation due to the slightly non-homogeneous nature of the
textures. Secondly, the third example shows a large error in . This is due to the
fact that the texels roughly form lines in two directions, but the algorithm chose the
wrong direction to line up the texels. However this is an error that even a human
might make, given the same task, as it is impossible to distinguish between the two

directions of lines, without more detail in the texels.

4.4.2 Tests with real images

The algorithm was also tested on real images. Figure 46 shows the objects that

were photographed. Close up pictures of textures were taken from different angles as
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Figure 45: Errors in affine parameters. The crosses denote estimated values and
the circles denote real values.

seen in the first two columns of Figure 47. The third column shows the transformed

version of images from the first column, such that they resemble the textures seen
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in the second column. The images show good qualitative results.

(a) drain cover  (b) basket  (c) air-conditioning
outlet

(d) necktie (e) dish cloth

Figure 46: Objects that were photographed.

4.4.3 Simple applications of the method

As mentioned previously, the method may be used in a number of applications
apart from shape-from-texture; these include object re-texturing and placing planar
objects in a scene. In this section we show an example of each.

First we show the example of re-texturing. If the only input we have is the
textured cube shown in Figure 48(a) and a sample of the frontal texture shown
in Figure 48(b), then it is possible to re-texture the cube. Using the method, the
transformation from the frontal texture to each of the three visible sides of the cube
can be estimated. Then, given some other frontal texture (such as the samples
shown in Figures 49(a) and (b)), we can use the same three transformations to
place the new texture on the cube. The resulting cubes are shown in Figure 49(c)
and (d).

The next application demonstrated here is placing a planar object in a scene. For
this example, we wish to place an embroidered motif onto a dish cloth. Figure 50(a)

shows the motif. The dish cloth was the last example in Figure 47. In Figure 47 we
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Figure 47: Results from real images. The first and second columns show the input
images. The third column shows the transformed versions of the first column so
that the texture matches that in the second column.

saw the dish cloth when viewed frontally (in the first column), as well as the dish

cloth viewed with some slant angle and rotation (in the second column). Using the

(b)

Figure 48: Input for re-texturing
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Figure 49: Re-texturing a cube. (a) and (b) show samples of textures used in the
re-texturing. The results are given in (c¢) and (d).

algorithm, the affine transformation T from the frontal view to the slanted view
was calculated. Since we have a frontal view of the embroidered motif, it may also
be transformed by T to give the same orientation as the slanted dish cloth; the

result is given in Figure 50(d).
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(a) The original motif  (b) A slanted and rotated
view of the dish cloth

(¢) The transformed motif (d) The motif placed
on the dish cloth

Figure 50: Placing an embroidered motif on the dishcloth.

73
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4.5 Discussion and conclusions

This chapter has presented a new method to estimate the affine transformation
between pairs of textures. Previous methods are susceptible to noise, or only usable
in a very restricted set of cases, or too computationally expensive. The new method
has been shown to give good quantitative results when tested on a set of images
created using the Brodatz textures. Real images gave good qualitative results.
This method should not be affected by contrast and illumination variations in
the images since neither affect (i) the ability to transform a texture into its isotropic
version, or (ii) the ability to calculate the rotation between the isotropic versions.

This assertion could be verified more thoroughly in future work.



Chapter 5

A General Shape-from-Texture

Method

5.1 Introduction

A shape-from-texture method in one of its most general forms is presented in this
chapter. Previous shape-from-texture methods assume that the texture is con-
strained by one or more of the following properties: homogeneity, isotropy, station-
arity, or orthographic view. In this work, none of these assumptions are made. The
frontal texture is not presumed to be known a priori, or from a known set, or even
present in the image. Instead, surface smoothness is assumed, and the surface is
recovered via a consistency constraint. The key idea is that the frontal texture is
estimated, and a correct estimation leads to the most consistent surface. In addition
to surface shape, a frontal view of the texture is also recovered. Results are given

for synthetic and real examples.

5.1.1 Basic idea

Suppose that a texture is composed of individual texels, and that one texel is
known to be viewed frontally in an image. Other texels may be slanted away
from the camera, and lie at a different distance from the camera than the frontal

texel. Slanting the texel will cause foreshortening in the tilt direction and changing

75
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distance from the camera will result in a change of scale. The appearance of any
texel will be related to the appearance of the frontal texel by a geometric transform,
which locally can be modeled as an affine transformation. By measuring at each
texel the affine transformation that relates that local texel to the known frontal
texel, we may determine the orientation of the surface at that point in the image.
From this information it is possible to reconstruct the surface.

Sometimes however, no frontal texel is visible, or identifiable in the image. Our
approach is to search over all possible texels to determine which is frontal. Each
hypothesized frontal texel leads to an estimate of the orientations across the surface.
However, the key observation of this work is that an incorrect hypothesis of the
frontal texel leads to estimates of surface orientation that are inconsistent, and
in fact cannot be realized by a reconstructed surface. Therefore, a search over
all possible frontal texels leads to a unique consistent estimate of frontal texel,
and hence surface shape. We demonstrate that this is feasible, even if only the
orientation cue is used to calculate surface consistency. The search is carried out
using the Levenberg-Marquardt method, and does not require that the frontal texel
be visible in the image.

It has been shown by Forsyth [16] that under orthographic projection, the frontal
texel can be determined regardless of the shape for the surface. However, his ap-
proach cannot be applied in the case where individual texels may be scaled due
to perspective views or for any other reason. The contribution of this work is to
provide a shape-from-texture method that does not assume that the texel is homo-
geneous, isotropic, or stationary, or that an orthographic view is employed. To my

knowledge, no algorithm exists for this level of generality.

5.2 Overview of the new method

We begin with the image of a smooth textured surface. The shape of the surface is
found by firstly searching for the frontal texel, as described in Section 5.2.1. The
search aims to find the texel that leads to the best surface consistency measure,

described in Section 5.2.2. Once the frontal texel has been found, surface shape is
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estimated using the procedure in Section 5.2.3.

5.2.1 Searching for the frontal texel

Write T_,; for the affine transformation from the frontal texel f to the texel 7. The
aim is to determine T;_,; for all ¢, as these matrices may be decomposed to give
the orientation and distance of each .

Since we do not know the appearance of the frontal texel, we cannot compute

the matrices Ts_,; directly from the image. Instead, we can write
Ty =TTy, (14)

where T,_,; is the transformation from a reference texel j, arbitrarily chosen as a
texel from the image (or some affine transform of it), to texel ¢, and T_,; gives the

affine transformation from f to j. The matrices T,_,; may be computed from the

Figure 51: Transformations between texels

image, it is then a matter of searching for the affine transformation T;_,; such that
the most consistent surface is achieved from the matrices T;_,; T, ;. The measure
of surface consistency used in this work is given in the next section. The matrix
T;_,; may be decomposed via RQ decomposition [23] to give T;_,; = RQ where
R is a lower triangular matrix and Q is orthogonal. We are free to replace T_,;
with T's_,;P where P is a rotation matrix, as an initial rotation does not alter the
interpretation of the surface orientation, and hence does not affect the measure of
surface consistency. We can choose P = QT so that we need only search lower

triangular matrices' as candidates for T;_,;P.

'If Q is not orthonormal, then QT will not be a pure rotation, however scaling factors are
irrelevant as seen in the next paragraph.
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We can further reduce the search space by the fact that the surface consistency

measure does not depend on scale, so that we only need to search for matrices

10
of the form . Using a Levenberg-Marquardt search [62], the values of ¢
c b
and b that give the most consistent surface are determined, say c; and by. The
) ) 1 0
transformations Ts_,; are then given by T;_,;
ci by

5.2.2 Surface consistency measure

To test whether the transformations T 7—i (where the A denotes the fact that T Fsi
is only a candidate) give a consistent surface, the following procedure is employed.
First, calculate the surface normals that arise from the transformations T f—i- This

is done by decomposing T f—i via singular value decomposition such that

T;,;, =UDV"
™ (15)
=UDU*(UVY)

where D is a diagonal matrix satisfying d;; < dyg, and U and V are orthogonal

matrices. The decomposition is interpreted as follows.

1. The texel is rotated by the matrix UV,

2. The image is now rotated by U7, stretched in the coordinate directions by D
and then rotated back by the rotation U. The net effect of this is to scale it

along two axis directions whose orientation is determined by U.
3. Thus, U gives the tilt direction.

4. The amount of scaling (given by the entries of D) indicates the degree of slant.

Note that the degree of tilt or slant of the image does not depend on V. Hence
V may be ignored. Alternatively, we can multiply on the right by any rotation,
without changing the result of the slant or tilt calculation. If the slant and tilt of

the surface patch are given by ¢ and 7 respectively, then
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cos(T) = uqy, (16)

sin(7) = w19

and
COS(O') = dn/dgz,

sin(o) = £4/1 — cos?(o).

Equation 16 comes from the fact that

U cos(t) sin(r) (18)
—sin(7) cos(7)

and Equation 17 arises from

D= (19)

where 7 is the scaling factor due to the distance from the camera. The surface

normal is then given by

Ng + cos(7) sin(o)
ny, | = | xsin(r)sin(o) |- (20)
n, cos(0)

From the surface normals, the gradients in the z- and y-directions are calculated

for each patch:

fm = _nm/nz
fy =—ny/n,

The Fundamental Theorem of Line Integrals states that

||/Cvz.dr|| —0 (21)

for all closed curves C parameterized by r and a differentiable function z whose
gradient \/z is continuous on C'. Using the calculated surface gradients as /z
in Equation 21 and setting C' to be any closed curve, we would expect that the
left-hand-side of Equation 21 would be close to zero if we had correctly estimated

the frontal texel, and much larger if we had not. Therefore, a measure of surface
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inconsistency is obtained by summing the left-hand-side of Equation 21 around
various loops. The loops used in the method are the triangles formed by choosing
sets of three neighbouring texels and using their coordinates as the corners of the

triangles. The cost term is then given by

N
cost = 21 (faists fyin)-(Tig — Zit, Yi2 — Vi) (22)
1=

+ (fris fyi2)-(Tiz — i2, Yi3 — Yi2)

+ (frizs fyi3)-(Tin — i3, Yi1 — Yi3)

where N is the number of loops, (%, ¥in) is the location of the nth texel in the ith
loop, and (fz,in, fy,i,n) are the corresponding gradients in the z— and y— directions.
The cost term may be interpreted as such: choose any three points on the surface,
and as you move along the three sides of the triangle formed by these points, sum
the change in surface height. Do this using the known gradients at each point
and the distance between points. If the gradients were correctly estimated, the
net change in surface height will be equal to zero. We use this cost term with the
Levenberg-Marquardt method [62] to search for the values of ¢ and b that result in

the most consistent surface.

5.2.3 Estimating shape using the frontal texel

Once the frontal texel has been determined, it is used to estimate the surface shape.

1 0
This is done by decomposing the transformations T;,; = T,_; via
cr by
equations 15, 16 and 17. Then
T = arctan(uya/u11), and (23)
o= arccos(dyy/dys) (24)

specify the orientation at each texel.
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5.2.4 Finding texels

The initial step of the shape-from-texture algorithm described in this chapter is to
detect texels in the image. There are various ways to do this. Leung and Malik [49]
detected texels by finding “interesting elements” within an image, and growing them
to form a distinctive unit. The interest operator is based on the eigenvalues of the
second moment matrix computed for a windowed segment of the image. Recently,
many other interest point operators have emerged including the scale invariant
feature transform (SIFT), which has been reported to perform well using various
criteria [64]. In my experiments, interest points are found using a Maximally Stable
Extremal Region (MSER) detector [63] as this was found to work well, with the

additional advantage of having the code readily available [83].

5.3 Results

The new method for the perspective camera model was tested under various sce-

narios. The five main experiments are explained below.

1. Section 5.3.1 describes a test where a synthetic example was created with a
smooth surface, and texels placed on the surface. The aim of this experiment
was to test the novel part of the method — the minimisation of surface incon-
sistency, and as such it was necessary to avoid the texel-detection step and

the automated estimation of affine transformations between texels.

2. Section 5.3.2 describes a synthetic example where texel detection was im-
plemented, as was the automated estimation of the transformation between
texels. The surface was more realistic as texels were placed at random loca-

tions on the surface with random initial rotation angles.
3. Section 5.3.3 describes the first test on a real image.

4. Section 5.3.4 describes more detailed testing of the method: the effect of the
choice of reference texel, and whether a small number of texels is sufficient to

reasonably estimate the surface shape.
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5. Section 5.3.5 describes a version of the method that has been altered to be
used in a structure-from-motion setting. A toy car was moved about on a
smooth surface and the shape of the top view of the car were estimated by

the algorithm, as well as the car’s path.

5.3.1 First synthetic example

Firstly, the novel part of the method was tested (the minimisation of surface incon-
sistency) without either the texel-detection task or the estimation of affine trans-
formation task playing a role. Both of these tasks have been previously tackled by
others, but to my knowledge the minimisation using surface consistency has not.
Therefore in the first synthetic example, the frontal texel (the image of the duck
seen in Figure 52) was affine transformed and placed onto the surface in a regular

grid to avoid having to search for texels. In order to place the texels, the frontal

Figure 52: Texel used for first example

texel was randomly rotated about its normal axis, and placed on the surface such
that its surface normal matched that of the surface patch under it. The texels
were also scaled to account for the shrinking effect as texels move away from the
camera. The untextured surface is shown in Figure 53 (from an oblique angle) and
the textured surface (as viewed from on top) is shown in Figure 54.

The second texel in the top row of the textured surface was arbitrarily denoted
the reference texel, 7. The transformations from this texel to every other texel
T;_,; were estimated using a manual process: each of the transformed texels were

presented to the user who clicked on three corresponding points (the tip of the
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Figure 53: Synthetic surface given by z = sin(z + §)sin(y + §) viewed from an
oblique angle.

duck’s beak, tail and front foot). Using these three points, the transformations be-

. 10
tween texels could be calculated. The transformations T;_,; = T;_,; were

c b

formed using some initial (¢,b). The surface normals corresponding to each T Fi
were calculated along with the corresponding gradients in the z- and y-directions.
Note that from each transformation ’i‘f_)i, two surface normals (and hence two
choices for gradients in the z- and y-directions) are obtainable, denoted by the
positive and negative choices in Equation 20. This is the previously mentioned 7-
shift tilt ambiguity. For this example, a fast way of resolving the ambiguity for the
special case of texels placed in a grid was used, however other methods for solving
the ambiguity have already been mentioned in Section 3.2.2. The ambiguity was
resolved up to gradient sign by regularizing gradient values one by one such that
they were most similar to the gradients around them. It was found that the best
way to do this was to begin with the texel with the highest slant and to arbitrarily
choose either of the gradient options. Then its neighbour with the highest slant
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Figure 54: The textured surface used as input for the algorithm. The surface is
viewed from directly above.

was regularized to match the gradient of the first patch. This pattern continued
such that the gradients were resolved in the order of highest slant of any texel that
neighboured an already resolved texel. In this way, the texels of low slant were
resolved last.

Once all gradients had been decided on, the Levenberg-Marquardt method was
used with a surface inconsistency measure to search for (cs,by). Instead of using
triangular loops for the cost function in Equation 22, it made more sense to use

square loops since the texels were arranged in a grid. The transformations Ty_,; =

1 0
T;i. were then decomposed to produce estimates for distance from

ci by
camera (up to scale), slant and tilt via Equations 15 and 24.

The optimization was initialized from the point (¢,b) = (5,5) however the starting
point might have been any reasonable value as shown by Figure 55. In (a) we
see a plot of the log of the surface inconsistency measure as it varies across (c,b)
space. The darkest point in the figure corresponds to a global minimum in surface
inconsistency; in other words, the values of ¢ and b at this point give rise to the most
consistent surface. Only positive values of b are considered since negative values

result in a flip of the texel (a transformation not allowed), and the case where b = 0
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gives rise to a singular Ty_,;. Figure 55 (b) shows a zoomed-in version of (a) where
the global minimum is at the location (cs,b;s) = (-0.16,0.52), which is close to the
required value of (-0.19,0.52).

Figure 55: Surface inconsistency as it varies with ¢,b. Brightness implies high surface
inconsistency. The dark spots are the values of (¢,b) that give rise to a consistent
surface. (a) ¢,b with bounds [-10,10]. (b) zoomed in version with bounds [-1,1]. b
=0 corresponds to a singular T_,;.

The frontal texel was reconstructed from j using

fo=@m) g

1 0 (25)

cr by

and is shown in Figure 56 (b). Given that an initial rotation of the frontal texel
makes no difference to our interpretation of surface shape, the texel in Figure 56 (b)
is a good match of the true frontal texel. The texel defined as j is shown in (a).
The surface shape was then estimated. The distance to camera was calculated up
to scale using the values of r in Equation 19 for each texel, to give the estimation
of surface shape shown in Figure 57. Qualitatively the shape estimation is good.
Slant and tilt were calculated to produce the needle diagram shown in Figure 58,

in which the length of each needle depends on the slant angle and the direction of
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| T

(a) (b)

Figure 56: (a) Texel defined as j. (b) Frontal texel as estimated by algorithm.

Figure 57: Estimation of surface shape using the scale of each texel. The surface is
shown from an oblique view.

the needle is the tilt angle. The average tilt error was 1.47° and the average slant
error was 1.51°. We would expect some error due to the manual input of the user to
obtain feature point coordinates. The fact that the error still remains low implies
a good level of robustness when estimating the frontal texel and the subsequent
shape reconstruction.

The Levenberg-Marquardt optimization located the minima in a time of around
one second using MATLAB version 6.5 [31], running under Linux on an Intel Pen-

tium 4 2400 MHz CPU.

5.3.2 Second synthetic example

The algorithm was altered to include automated texel detection and estimation of
affine transformations. It was tested on a synthetic image of a sphere covered in
the texel shown in Figure 61(a). As with the first synthetic example, the texel was

chosen to demonstrate that the algorithm works even if the texture is anisotropic.
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Figure 58: Calculated surface orientation shown from top view.

The texel also has many right angles which clearly expose any potential error in the
estimate of the frontal texel.

As with the previous example, the texels were placed by randomly rotating the
frontal texel about its normal axis such that its surface normal matched that of the
surface under it. The texels were also scaled to account for the shrinking effect as
texels move away from the camera. The difference with this example is that the
texels are not placed in a regular grid but at random locations on the surface.

The textured surface shown in Figure 59 is a non-homogeneous, anisotropic and

non-stationary texture.

Finding texels

Interesting regions were found using the Maximally Stable Extremal Regions (MSER)
detector of Matas et al. [63]. A number of different techniques for distinguishing
true texels from other detected regions were tried. Firstly SIFT features [58] were
used for this task, where each texel was assigned a 128-vector. Ideally one would
cluster the regions based on their SIF'T feature vectors, however as a proof of con-
cept, an experiment was conducted to test the classification ability of the SIFT

features. The region with the median feature vector was assumed to be a true texel
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Figure 59: The textured surface

(the ‘average’ texel). This is reasonable since the detected regions comprise many
more true texels than non-texels. Then, the vector distance from the average texel
to every other region was calculated, and regions were classified as texels/non-texels
based on whether that distance exceeded a threshold or not. This resulted in a fairly
good classification of texel/non-texel regions, however a small number of non-texel
regions always managed to be classed as texels.

In the end, a related but different method was used. A first pass removed regions
that were large compared to the image size. In practice, regions were removed if
their maximum radius was greater than ten percent of the shortest image axis
because we could safely assume that true texels contributing shape information
would never be this large. The average texel was again found using SIF'T features,
but this time the distance from this texel to any detected region was found using
the following steps: transform the average texel to its isotropic version and do the
same for the detected region. Rotate the isotropic version of the average texel in fine
steps, calculating the correlation between it and the isotropic version of the detected

region. The distance between the two is given by the maximum correlation. The
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angle at which the maximum correlation is achieved is also stored for later use in the
shape-from-texture algorithm. Again regions are sorted into texels and non-texels

using a threshold on the distance.

Searching for the frontal texel

In order to search for the frontal texel, a reference texel j needed to be chosen.
A good choice for j was an arbitrary texel that had been transformed to make
it isotropic. This is a natural choice for j since the first step of calculating the
transformations T_,; is to make j isotropic, and bypassing this step speeds up the
algorithm. The texel j is shown in Figure 61(b).

To find the values of ¢; and by an initial coarse search in (c,b) space was
performed to find some near-optimal values. This was followed by a Levenberg-
Marquardt optimization starting from these values to find the optimal solution.
The (c,b) surface in Figure 60 shows that there is a definite global minimum in

surface inconsistency, indicated by the localised dark spot.

Figure 60: The (c,b) surface. The darker the pixel, the lower the surface inconsis-
tency (and the higher the surface consistency). Therefore the darkest point corre-
sponds to a global minimum where the values of ¢ and b produce the true frontal
texel.

The estimated frontal texel which resulted is shown in Figure 61(c). Note that its
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rotation and scale compared to the true frontal in Figure 61(a) are of no consequence
since these factors play no role in determining surface orientation. Therefore the
estimated frontal texel can be scaled and rotated in order to compare it to the true
frontal texel. This is depicted in Figure 61(e) where the pixels that differ between
the two are in black. Most of these pixels that differ are due to the noisy border of
the estimated frontal texel, and the fact that one of the reference texel’s ‘legs’ was
cut slightly short during the texel-finding step. However most of the pixels from
the estimated and true frontal texels are in agreement, and therefore the estimation

1S accurate.

n > 24

(a) True frontal (b) Reference texel  (c) Frontal estimated
chosen arbitrarily by algorithm

(d) the texel in (c) after (e) the pixels that differ
rotation and scaling between (d) and the
true frontal texel

RN

Figure 61: The true and estimated frontal texel. They are shown in (e) to be
practically the same shape.

The surface orientation at each texel can then be calculated. This is demon-
strated with the needle diagram shown in Figure 62. Note that the well-known
tilt ambiguity can be resolved here since during the placement of texels, scaling
occurred to account for the distance of each texel from the theoretical camera. The
scale at each texel can be deduced from the transformation T;_,;. The tilt ambi-
guity can be resolved by choosing the candidate for tilt which is in the direction of
decreasing scale.

The slant and tilt values were interpolated at values in a regular grid and the

surface was reconstructed using the algorithm by Kovesi [43]. This surface is shown
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Figure 63: Calculated mesh surface.

in Figure 63.

5.3.3 First test on a real image

Next the algorithm was tested on a real image. Fabric was draped over the back of
a chair to form the curved textured surface seen in Figure 64. This particular fabric

was chosen because it demonstrates that the algorithm works on non-stationary



92 CHAPTER 5. A GENERAL SHAPE-FROM-TEXTURE METHOD

and anisotropic textures in a real image. The image has clear perspective effects,
seen by the decreasing scale of the leaves as they move away from the camera.

Again, potential texels are found using the MSER detector and true texels are

Figure 64: Real image: fabric with a non-stationary, anisotropic texture.

sorted from other regions. The reference texel j was chosen to be an arbitrary texel
that has been transformed to make it isotropic, as shown in Figure 65(a). The
transformations T_,; are found as before: each visible texel (such as the one shown
in Figure 65(b)) is firstly made isotropic (Figure 65(c)), and this is rotated by the
angle that makes it most similar to the reference texel (Figure 65(d)). Therefore the
sequence (b)—(d) shows the transformation T;_,;; we take the inverse transformation

to give T,_,;. As before, an initial coarse search in (c, b) space yields near optimal

(a) Reference texel (b) Some visible texel (c) Isotropic (d) Rotated version
version of (b) of (c) to match (a)

Figure 65: Calculating the transformations T;_,;. The sequence (b)—(d) shows how
some visible texel is transformed into the reference texel shown in (a).
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values for surface consistency, which are then refined with a Levenberg-Marquardt
method. Figure 66(a) displays the frontal texel as estimated by the algorithm. It
is a transformed version of the reference texel shown in Figure 65(a). A real image
of the fabric when viewed frontally is shown in Figure 66(b). For comparison, and
considering that initial rotations play no role in shape information, the image in

(b) has been rotated so that it matches the orientation in (a).

(a) Frontal estimated (b) Real image
by algorithm of fabric viewed frontally

Figure 66: Estimated and true frontal texels.

The estimated frontal texel is used to calculate the orientation at each texel.
This is shown in a needle diagram in Figure 67. The surface is constructed again
with Kovesi’s method [43] to give the surface seen in Figure 68(a). The curved
corner of the chair is clearly seen. In Figure 68(b) the original image of the texture
has been orthogonally projected onto the surface. Although it does not technically
make sense to do this, since there are clear perspective effects in the image and it is
being projected orthographically, the purpose of Figure 68(b) is to allow the surface
in (a) to be visualised. For comparison, Figure 69 shows a real image of the chair
from a similar angle.

The aim of this test was to qualitatively show that the algorithm could be
used on real photographs. As indicated by the estimated frontal texel and the
resulting needle diagram, a qualitatively good estimation of the curved surface can

be achieved. The next section describes some more detailed testing of the algorithm.

5.3.4 Another real image

In this experiment, the aim was to perform more detailed tests on the method. In

particular, the effect of the choice of reference texel was investigated, and it was



94 CHAPTER 5. A GENERAL SHAPE-FROM-TEXTURE METHOD

Figure 67: Needle diagram also showing detected texels
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(a) Estimated surface shape (b) Texture projected onto surface

Figure 68: Reconstruction of chair

observed whether only a few texels could indicate the general shape of the curved
surface.

Figure 69: Real image of the chair.
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The set up of the experiment is shown in Figure 70. The camera was placed

looking diagonally downward onto a sloped surface. Paper leaves were used as texels

surface

Figure 70: Set up for experiment.

so that so that all texels were identical. 24 leaves were placed on the surface with
random rotations as shown in Figure 71. This image was used as the input to the

algorithm.

Figure 71: Set up for experiment. The leaves were numbered 1-24 with each leaf’s
number appearing below it in the figure.

Since the aim here was to test the optimisation part of the method (the novel
part), the estimation of affine transformations between leaves was achieved by click-
ing on three feature points of each leaf and calculating the transformations between
these sets of points.

The shape-from-texture method was run 24 times, each time using a different
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leaf as the reference texel. The estimated frontal texels that result are displayed
in Figure 73. Below each estimated frontal texel is the number of the leaf that
was used as the reference texel. For comparison, an image of the real frontal texel
is shown in Figure 72. Most of the leaves gave a reasonable result, considering
that rotations and scaling are not important because they do not alter the surface
normal and hence the consistency measure. Most notably, good results are achieved
when the leaves numbered 3, 4, 6, 7, 11, 1 ,13, 15, 18, and 19 are used as reference
texels. The worst performing reference texels were 2, 5, 16, and 20. However, an
inspection of Figure 71 shows that leaves 2, 5, and 16 are the only leaves that
were substantially curled which does not match the assumption that all texels are
‘painted’ onto the surface, and that leaf 20 is heavily foreshortened, to the point
where the three feature points were difficult to click on. This experiment suggests
that when choosing a reference texel, most choices will give a reasonable result,
however if a bad choice is made e.g. choosing a leaf that does not fit the assumption
of having no height, the estimate of the frontal texel suffers. This suggests that some
sort of ‘average’ frontal texel should be used to construct the surface shape, to help
reduce the effect of an outlier. Future work in this area may be to devise a method
of calculating the average frontal texel.

The surface was then reconstructed. In the results that follow, leaf number 3 has
been used as the reference texel. The aim here is to show that even with as few as 24
texels a reasonable surface reconstruction can be achieved. The (¢,b) surface shown
in Figure 74 shows a definite global minimum in surface inconsistency, corresponding
to the true frontal texel. Using this frontal texel, the resulting surface is shown in
Figure 75, viewed from almost side-on so that it can be compared to Figure 70.
The camera has been drawn onto the diagram to show that it looks directly down
in this reconstruction. = The reconstruction is satisfactory, considering the few
texels present on the surface to indicate its shape. The surface does cup a little
in its centre, however the overall shape is not too bad; we strongly see the surface
slant away from the camera at point A, before becoming more orthogonal to the
line of sight at B, and then slanting away again at point C. Future work would be

to see how the number of texels, and their relative size compared to the ‘wiggles’
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on the surface, affect the reconstruction. An interesting experiment would be to
reduce the number of texels to the point where the surface cannot be satisfactorily
reconstructed. In practise however, one assumes that the method could only be
reliably used where there are plenty of texels to give shape information. For all
other cases, this method can still be used to supply additional information to other
reconstruction methods — say, to sort out ambiguities in a shape-from-shading
problem — even if a very accurate surface shape cannot be achieved from texture

alone.
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Figure 72: True frontal texel.

20

Figure 73: Estimated frontal texels when various leaves are used as the reference
texel. Leaf numbers appear below the corresponding leaves.
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b

Figure 74: The (c,b) surface.

Figure 75: The reconstructed surface.
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5.3.5 A structure-from-motion experiment

It has been previously noted that shape-from-texture shares many similarities with
structure-from-motion; if the camera is stationary and the moving object is planar,
or nearly so, then the superposition of the images of the moving object produce a
texture, the structure of which can be solved.

In this experiment, the aim was to test whether a shape-from-texture algorithm
could be altered for a structure-from-motion setting. The experiment served as a
proof of concept, rather than a detailed investigation and so quantitative measures
were not been applied.

A toy car was moved about on the surface of a chair with the camera pointing
down on an angle as seen in Figure 76. This is effectively the same as a camera
aimed horizontally at a sloped surface. The aim of the experiment was to estimate

the shape of the top view of the car, as well as its motion in 3-D space.

oo

Figure 76: Set up for structure-from-motion experiment.

The sequence of the car moving about on the surface is shown in Figure 77.

The shape-from-texture algorithm was adapted to the structure-from-motion
task by firstly assuming that the car can be approximated by the horizontal plane
that goes through the car’s hood and back lights. This plane has approximately
the same orientation as the surface beneath the car. In order to find the affine
transformations between this plane in the various frames of the sequence, each
frame was presented to the user in turn, and three points on the plane were clicked

on; these are shown in Figure 78.
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Figure 77: Sequence of car moving about on surface

Figure 78: The car used in the experiment. The feature points labeled A B, and C
correspond to the front middle of the car’s hood, and the two back lights respec-
tively.

As with the shape-from-texture algorithm, a reference texel was chosen. In this
case, the ‘texel’ was the car in one of the frames. The method was then used to
find the transformation from the reference car to the ‘frontal’ car i.e. the top view
as shown in Figure 79(a).

Figures 79(b—d) show the car as it appears in various frames. As mentioned,
the ‘texels’ here are the horizontal planes that run through the hood of the car,
which are depicted as the trapeziums superimposed in (b—d). When each of these
cars is used as the reference car, the method estimates that the ‘frontal’ car is as
shown in Figures 79(e—g). Note that regardless of the appearance of the cars in (e—
g) we require only that the trapeziums from (b-d) transform into rectangles that

have very similar dimensions to the rectangle in Figure 79(a). The rectangles in
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Figures 79(e—g) have not been redrawn onto the image by hand; the images in (b—
d) were simply transformed by the method to show the estimate of the frontal car.
The rectangles that result in (e-g) have close to the correct dimensions as shown
in Figure 80 where the rectangle representing the true frontal dimensions has been
superimposed with scaled and rotated versions of the quadrilaterals representing
the estimated frontal dimensions. They also have close to right angles; the average
angle at the 12 corners is 90° with a standard deviation of 3.2°. Satisfactory results
were obtained no matter which frame was chosen to provide the reference texel.

In order to show the estimated surface normals, all frames were binary thresh-
olded and added to give the image in Figure 81. The superimposed arrows indicate
the direction of the estimated surface normals. Since the cars are driving about on
effectively an inclined surface we expect the surface normals to be pointing directly
upward. This is the case for most arrows although two of the arrows have a small
horizontal component which may be due to user error when clicking on the feature
points, or the fact that the surface does indeed curve upward at the edges (the sur-
face is an office chair). The estimated surface is shown in Figure 82 with the car’s
trajectory superimposed. At some points in the figure, the car’s trajectory appears
to extend beyond the surface beneath it; this is an artifact of the implementation
rather than the estimated surface. The edges of the surface are slightly degraded
during the process of interpolating surface normal information all over the surface,
using the information from a few points on the surface. The main observation is
that the surface shape slopes upward as required.

In this experiment, quantitative measures have not been applied. The aim
has been to see whether the shape-from-texture algorithm could be applied in a
structure-from-motion setting. This test shows that it can. Future work in this
area would incorporate more robust testing with quantitative error measurements.

It is an interesting question as to whether many objects can be used for this
kind of experiment. The toy car was fairly ideal in that a visible horizontal plane
through the car could be used to approximate the car itself. Also this plane had an
orientation similar to the surface beneath the car, since cars tend only to yaw, but

not pitch or roll with respect to the surface.
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5.3.6 Discussion and conclusions

So far in this work, textures have been described in terms of distinct texels, but
in principle our algorithm will work for textures where one cannot distinguish in-
dividual texels; interest point locators such as Lowe’s [58] might be used to detect
corresponding points in the repeated pattern, and a second moment matrix as-
signed to each point. Transformations between textures at different points would
be determined using the algorithm outlined in Chapter 4.

A method was demonstrated for estimating the frontal texture on a surface and
using it to reconstruct the surface shape. The main contribution of this work is a
means of solving the shape-from-texture problem using a perspective camera model
without the assumptions that the texture is stationary, homogeneous or isotropic,
or that the frontal texture can be located in the image, is known a priori or from a

given set.
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Figure 79: Cars as they appear in various frames are shown in (b—d). When each
of these is used as the reference car, they are transformed into the ‘frontal’ car as
shown in (e—g). Since the car is approximated with a horizontal plane we need
only to check that the superimposed trapeziums in (e—g) have the same angles and
dimensions as that in (a). The rotations and size of the rectangles do not matter.
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Figure 80: Rectangles that represent the dimensions of the frontal texel. The true
dimensions are depicted with a solid line. The three estimates are superimposed

with non-solid lines.

Figure 81: Estimated surface normals
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Figure 82: Estimated surface and trajectory of car



Chapter 6

Conclusions

This thesis has presented work in shape-from-texture, which is the problem of de-

ducing the 3-D shape of an object using the patterns of markings on its surface.

6.1 Contributions

This work has produced the following original work.

e A novel shape-from-texture algorithm for use with stationary, homogeneous
textures viewed orthographically. It was shown that the surface normal for a
patch of texture can be solved without explicitly calculating the transforma-

tion between any patches of texture.

e An algorithm that solves shape-from-texture in one of its most general forms;
it is designed to work regardless of whether or not the texture is homogeneous,
stationary or isotropic, and whether or not a perspective view is used. A

smooth surface is assumed.

e A method for estimating the affine transformation between patches of texture.
This method was shown to be useful as part of a shape-from-texture algorithm,

as well as many other applications.
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6.2 Summary of work

The first algorithm (presented in Chapter 3) was designed for orthographic views
of a texture. Although the previous methods by Garding, Malik and Rosenholtz
and Clerc and Mallat also assume that the texture is homogeneous and stationary,
the new method does not require the estimation of the transformation between
texture patches, as these other methods do. This more direct approach is possible
only if the viewing geometry is orthographic; the other methods mentioned above
also account for perspective views. The new method is based on the fact that as
an image is slanted, the second moments do not change about the tilt axis. This
simple property leads to an estimation of tilt, which in turn leads to an estimation
of the slant angle.

The effects of blur, illumination variations and windowing schemes were in-
vestigated. Then the algorithm was tested on synthetic textures to verify that it
behaved as expected. In tests on real images, the algorithm was found to respond
to segmented texture borders in a way that can be useful: the surface normal is
calculated by the algorithm to have a slant angle of 7 and tilt angle orthogonal to
the texture border. The algorithm was compared to Super and Bovik’s algorithm
which is the most similar previous algorithm. Tests showed that, as well as produc-
ing an additional ambiguity in the surface normal, their algorithm was less accurate
at estimating slant in areas where the texture did not change abruptly. Super and
Bovik’s algorithm was also prone to producing complex, and hence unusable, val-
ues for slant near areas of frontal texture. Thus, while using similar assumptions as
Super and Bovik’s algorithm, the new method presented in this thesis has further
advantages.

The second algorithm presented in Chapter 5 removed the assumptions that the
texture was isotropic, homogeneous and/or stationary. Perspective views were also
permitted. It is not assumed that the frontal texture is known, since the algorithm
firstly estimates the frontal texture and uses this to deduce surface shape. The
surface is assumed to be smooth, which allows estimation of the frontal texture via

a consistency constraint. No other algorithm solves shape-from-texture under these
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assumptions. Good results were achieved for real images. Experiments looked at the
effect of choosing various reference texels. It was found that a reference texel chosen
from the image generally led to a reasonable estimate for the frontal texel provided
that the reference texel conformed to the assumptions of being flat (‘painted onto
the surface’) and not too heavily foreshortened. For texels that did not fit these
assumptions, a good estimate of the frontal texel was not obtained. This implies
that some sort of ‘average’ frontal texel may be used to decrease the effect of a ‘bad’
reference texel. Another experiment showed that the algorithm may be adapted for
a structure-from-motion setting; using several snap shots of a car moving about on
a surface, the algorithm was able to estimate the dimensions of the car, the surface
shape (a simple inclined plane was used) and the car’s trajectory in space.

This thesis also presented a method for estimating the affine transformation be-
tween patches of textures (presented in Chapter 4). This method had been devel-
oped to be used as part of the shape-from-texture algorithm in Chapter 5, however
other uses for the method were explored, namely re-texturing an object and placing

an object in a scene.

6.3 Directions for future work

For the shape-from-texture method for orthographic views, future work could be

undertaken in the following areas:

e removing the need for user interaction in identifying the frontal texel. A
method for automatically estimating the frontal texture was developed by
Forsyth [16] for textures composed of distinct texels. If a similar method
could be developed for all textures (irrespective of whether or not distinct
texels can be located) this would replace the user interaction part of the

method.

e finding a method that automatically adjusts the size of the 2D Gaussian used
to window patches of texture. Potential ways of doing this were discussed in

Section 3.1.5. These suggestions are based on trying to find the characteristic
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scale of the texture so that an appropriately sized window can be used to

extract patches.

e determining what to do when the patch contains some of the texture border
and a slant angle of 7 is not required. One suggestion might be to remove all
such patches from the shape-from-texture process; shape information could
be inferred from the remaining patches. This should be a reasonable solution
since these patches containing some of the texture border do not generally
make up a large proportion of the set of all extracted patches; they only

reside around the edge of an object.

For the algorithm that estimates the affine transformation between texture

patches, future work could be undertaken in the following areas:

e finding a method to calculate the scale factor between textures. This does

not seem too difficult; ways have been discussed in Section 4.3.2.

e finding other ways that the method may be useful. For example the method
may be useful in rectifying text for optical character recognition, or deducing
shape changes in non-rigid objects by observing how the patches of texture

change.

For the shape-from-texture method for perspective views, future work could be

undertaken in the following areas:

e varying the texel used as the reference texel, and somehow incorporating all of
the estimates of the frontal texel into an ‘average’ frontal texel. This should

decrease the effect of a bad choice of reference texel.

e more experimentation to find the limits of the algorithm in terms of the size

and number of texels required to reasonably estimate the shape of a surface.

e demonstrating that the algorithm can work on images where the distinct texels
are not located, but instead patches of texture are used. This would allow the

algorithm to work on textures that do not exhibit distinct texels.
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Appendix A

The Brodatz Textures

These textures were used to test the new method for the orthographic camera model
in Chapter 3, and the method for estimating the affine transformation between

textures in Chapter 4.

Tl
Fog AT U
Wl e
£

D10

D16
2The texture D14 was not available electronically at the time that these textures were collected

from the web and so was not used for any experiments.
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