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Abstract

Feature detection is important in computer vision. Many methods have been
proposed that attempt to detect features in images automatically. The method
proposed by Per-Erik Danielsson is investigated in this thesis. It uses second
derivative information to extract local shape and orientation from a grey-scale
image. The algorithm returns a parameter that classifies the types of shape in-
cluding blobs, ridges, lines, and saddles present in the image. One of the imple-
mentation issues addressed is the algorithm’s many-to-one shape mapping, where
different image features are mapped to the same shape parameter. The thesis ex-
plains how to determine correct results from the shape parameter. Another issue
that is addressed is the choice of scale of the filters used. The proposed solution
applies several filters at different sizes, then combines the responses using the
“best” scale for each pixel. The thesis also shows how to visualise the informa-
tion returned by the algorithm. This is done by colouring an image according to
the shape parameter. Canonical shapes, blobs, ridges, lines, and saddles, being
represented by red, green and blue. Finally, the method is applied to mammo-
graph images to highlight important features of each image.

Keywords: Rotation Invariance, Second Derivatives, Segmentation, Orienta-
tion, Orthogonality, Feature Detection.
CR Categories: I.4.6, I.5.4
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CHAPTER 1

Introduction

Feature detectors are important in computer vision. The aim is to enable a com-
puter to recognize objects in images by the application of a series of algorithms.
I have extended an algorithm by Per-Erik Danielsson [2, 3, 4] that uses derivative
information for feature detection. His approach returns a shape parameter that
identifies symmetric shapes in an image. This shape information can be used to
segment and process images.

The use of derivative operators to find features is not new. However, this
algorithm is different in that it uses three orthonormal second-order filters rather
than two first-order filters or a symmetric second-order filter. Other methods
determine a derivative magnitude of some order, and a derivative orientation to
locate a feature (normally a step edge); this includes Prewitt [11], Sobel [10], and
Canny [1] edge detection schemes. Danielsson’s algorithm not only calculates
the second derivative magnitude but also returns the shape type and orientation
of the shape. It accomplishes this by using second-order convolution kernels to
extract information about features in an image. However, Danielsson’s algorithm
has some problems that need to be addressed before it can be applied.

There is a problem with the shape parameter returned by the algorithm.
Danielsson’s method uses only second derivative information, the result of which
is that only a subset of symmetric shapes (a range of shapes possessing bilateral
or rotational symmetry) can be detected. Any shape in the image that is not
of this type will return a misleading shape parameter. This is the problem of
false positives which affects many feature detectors. The solution proposed is to
determine a confidence factor for the shape.

It is possible that Danielsson’s method may be improved by incorporating first
derivative information. First derivative methods detect only odd-symmetric in-
tensity changes, while second derivative methods detect even-symmetric intensity
changes. This means that first and second derivative methods can be considered
complementary in nature. Applying both first and second derivative operators
should allow most feature information to be extracted. With the introduction of
first derivative information it might be possible to detect non-symmetric shapes
in addition to symmetric shapes. The advantages of using both first and second
order information can be seen in the local energy feature detector [9] by Morrone
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1. Introduction 2

and Owens. It uses a pair of filters, one of which is for even-symmetric changes,
and the other for odd-symmetric changes. Its advantage is that it can detect edge
features without the problem of false positives that affects other edge detection
schemes.

Another problem is that the types of shapes detected depend on the size of the
filters used. It is possible to find the appropriate size of the filters through trial-
and-error. However, an automated solution is preferable. The problem of scale
plagues many areas in computer vision. A solution may come from the efforts of
Koenderink [7, 6]. It is hoped the unique nature of Danielsson’s algorithm may
allow for an easy way to determine scales to use when processing an image.

One problem is finding an effective way of visualising the information calcu-
lated by this algorithm. Using colour to represent shape types is one way that the
data could be represented. Colouring in this way may enhance important features
in an image. One possible application for visualising this way is the enhancement
of cancer features in mammographs. The method can enhance cancer features by
using contrasting colours, allowing the radiologist to identify such features with
greater ease. Another possibility is the removal of veins and arteries from the
image to make the cancers easier to detect.

Chapter 2 introduces some of the basic methods involved in feature detection.
This chapter also includes an overview of Danielsson’s papers and a preliminary
investigation into Koenderink’s work in scale space. Chapter 3 gives a detailed
introduction to Danielsson’s method and describes the filters used. Chapters 4–6
address the problems of Danielsson’s algorithm and propose solutions. Chapter
7 gives an application to mammographs of the methods shown in this thesis and
Chapter 8 gives a conclusion and looks at how the methods may be modified to
work on volumetric images.



CHAPTER 2

Literature review

Since the method used in this thesis is a difference method, this review dis-
cusses difference methods already in use. Next the issue of the scale of filters is
discussed. This refers mainly to the work by Koenderink [7]. Then the work of
Per-Erik Danielsson [2, 3, 4] is described. This shows how the ideas of Danielsson
have developed into an implementable algorithm applicable to two- and three-
dimensional images. In conclusion, Danielsson’s method is shown to suffer from
many of the problems that affect other difference methods.

2.1 Difference methods

A common approach to detecting features in images is the use of difference meth-
ods. Difference methods find features by calculating the derivative values of an
image and then analysing them. They normally use a mask that is overlayed on
the image at all points and calculates a weighted sum (a process called digital
convolution). The simplest of these is Roberts’ cross operator [12], which applies
the following 2×2 masks.

λ1

0 1
-1 0

λ2

1 0
0 -1

Applying the masks gives two derivative magnitudes λ1, λ2 in the two diagonal
directions. Given λ1 and λ2, the first derivative gradient and orientation are
calculated as follows.

magnitude =
√

λ2
1 + λ2

2

orientation = arctan (λ2/λ1)

Roberts’ cross operator has the problem that it is of limited spatial extent,
resulting in inaccurate λ values. More accurate but more computationally ex-
pensive filters for extracting the two λ values are as follows:

3



2. Literature review 4

3×3 Prewitt operator [11]

λ1

-1 0 1
-1 0 1
-1 0 1

λ2

1 1 1
0 0 0

-1 -1 -1

4×4 Prewitt operator

λ1

-3 -1 1 3
-3 -1 1 3
-3 -1 1 3
-3 -1 1 3

λ2

3 3 3 3
1 1 1 1

-1 -1 -1 -1
-3 -3 -3 -3

Sobel operator [10]

λ1

-1 0 1
-2 0 2
-1 0 1

λ2

1 2 1
0 0 0

-1 -2 -1

High values of the first derivative gradient correspond to step edge features
in the image. A step edge is a steep change in the intensity in the image over po-
sition. This is an example of an odd-symmetric change. Odd-symmetric changes
occur where intensities on one side of a position in the image correspond to equally
great but opposite intensities on the other side. Even-symmetric changes occur
where intensities in opposing positions are equal. Both odd- and even-symmetric
features have an orientation except for the special case of even symmetric features
that are circularly symmetric. First derivative methods can detect only odd-
symmetric changes; to detect even-symmetric changes a second-order method is
required. Examples of odd- and even-symmetric features are shown in Figure 2.1.

One problem with difference methods is that they accentuate image noise.
To overcome this problem an averaging mask is often applied to the image to
suppress the effect. Unlike the difference filters, whose weights sum to zero, an
averaging mask’s weights sum to one. The reason being so that applying an
averaging mask has no effect on the total brightness of the image. Averaging
masks are often produced by sampling values of the two-dimensional Gaussian
function. One well known method that uses Gaussians to suppress image noise is
the Marr-Hildreth operator [8]. This second order method applies a discretised
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Figure 2.1: Examples of odd- and even-symmetric features. Odd-symmetric feature on
the left. Even-symmetric feature on the right.

version of the Laplacian of the Gaussian to the image. Let G(x, y) be the two
dimensional Gaussian:

G(x, y) =
1

2π
exp

(

−x2 − y2

2

)

.

The Laplacian of the Gaussian is:

∇2(G) =
∂2

∂x2
G +

∂2

∂y2
G.

This function is then sampled to give a discretised version that is applied
to the image. At step edges the operator produces a zero crossing. The Marr-
Hildreth operator has the shape of an inverted Mexican hat. A main justification
of the use of the Marr-Hildreth operator is that this shape is similar to receptors
in the retina of the eye. Another filter that uses the Gaussian is the Canny
operator [1]. The main difference between the two methods is that the Canny
operator uses the direction of the gradient. The first-order directional derivative
of the Gaussian is applied to the image and maximal derivative values correspond
to edges.

All the methods mentioned above produce false positives, that is, they detect
edges where none exist. This occurs where there is sufficiently steep smooth
shading. Second derivative detectors produce false positives at points of inflection
of the intensity function.

The methods shown here also suffer from the problem of scale. Roberts’ cross,
Prewitt, and Sobel operators are small masks of fixed size. They fail to detect
edges that cover a large area. This can occur where there is blurring. For both
the Marr-Hildreth and Canny operators, the size of the masks used affects the
edges they detect.

2.2 Filter scale

Feature detectors often require a scale factor to be chosen. For many of these
methods there is no way to automate the selection of scale. In many situations a
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data

Γ at several different scales. Koenderink [7] has addressed this problem in a waythat allows for continuous changes of scale. His approach involves generatinga function describing the image intensity that has an extra dimension of scale.The result is a diffusion equation whose solutions represent the image at differentscales; the boundary condition for this equation is the original image.As an analogy, the operation of the diffusion equation can be described asa changing landscape. The scale variable can be imagined as representing time.The two-dimensional image can be seen as a landscape with mountains and valleysrepresenting corresponding light and dark regions of the image. As time passesthe landscape features change, mountains lose height and spread out, valleysbecome shallower and wider.One important aspect of the approach is that the scale must always be in-creased. To reduce scale would mean that spurious resolution would be createdin the image. The result represents a way of changing the scale between imagesin a continuous way rather than going back to the original image. This processis equivalent to applying smoothing Gaussian filters of increasing size. To geta minimal set of filters that detect all features the size of the filters should beincreased exponentially.

2.3 Discussion of Danielsson’s work

All difference methods shown in Section 2.1 are step edge detectors. However,step edges are not the only features that can be detected using difference methods.The following sections describe Per-Erik Danielsson’s difference method whichdetects a subset of symmetric shapes.

2.3.1 Construction of the ideal operator

When designing a feature detector there is usually a trade-off between the accu-racy of the result and the computation required. However, before the accuracyof an operator can be determined an ideal operator must be determined againstwhich the operators can be rated. The continuous image the operators are appliedto is called the luminance function. Danielsson [4] defines one main characteris-tic of an ideal operator as rotation invariance, that is, the operator’s combinedresponse magnitude is independent of the luminance function’s orientation. Ro-tation invariance implies that the operators are orthogonal to one another (theirinner product is equal to zero). These ideal operators can be convolved with theluminance function to calculate exact derivative information. Ideal operators aredifficult to apply in practice because they have infinite extent.We first look at the case for deriving an ideal first-order operator in the one-dimensional case; this derivation is carried out in the Fourier domain, where thefunction i2πu (where i =
√
−1 and u is frequency) is the first-order derivativeoperator. This function is multiplied by a rectangular low pass filter to reduce
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noise. The result is an ideal operator that finds the exact gradient of the lumi-
nance function and removes any high frequency components (such as noise). In
the two-dimensional case a pillar box is used instead of a rectangular low pass
filter, resulting in two operators gx and gy, which are are rotation invariant.

The first-order two-dimensional operators gx and gy can be used to gener-
ate three second-order operators gxx, gyy, and gxy. These are not rotationally
invariant, but by combining the filters into simple linear combinations they can
be made into rotationally invariant operators called f20, f21, and f22. Operators
f20, f21, and f22 are ideal second-order operators; one of these operators is the
Laplacian.

2.3.2 The use of ideal operators

The ideal second order operators described in Section 2.3.1 are used in Daniels-
son’s [2, 3] method to detect shape. When converted to the spatial domain the
pillar box filter has infinite extent, which is too computationally expensive to
implement. Instead a Gaussian function is used to remove high frequency com-
ponents. The three operators are applied to the image and the three resultant
numbers for each pixel are treated as a vector in three dimensions. Next this
vector’s orientation angles are extracted using a process called derotation. Dero-
tation rotates the vector onto the coordinate planes to extract the angles. The
extracted angles represent a shape type, the orientation of that shape, and the
magnitude is the second derivative magnitude.

The method for the second-order case in three dimensions is now examined.
This is required to apply the algorithm to volumetric data. An application for this
could be in medical imagery, where it would be possible to segment out organs
and tissue in volumetric data. A 6×6 matrix is multiplied by the six calculated
second-order derivatives to make them orthonormal. The first operator response
is the Laplacian and is independent of the orientation of the shape, the other five
operators contain orientation and shape information. Together they form a six
dimensional vector. This vector is derotated to give the three Euler angles, two
angles representing shape type, and the magnitude response.

2.4 Problems addressed in this thesis

The problems that occur in other difference methods carry over to Danielsson’s
method of shape detection.

• Difference methods tend to accentuate noise in the image and require the
use of a Gaussian to smooth the image. This is true of Danielsson’s method
and so a Gaussian is applied to the operators.

• Difference methods have the problem of false positives. Danielsson’s algo-
rithm also has this problem as it responds to shapes that are not bilaterally
symmetric.
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• The Marr-Hildreth and Canny methods have the problem of choosing the
appropriate scale. In Danielsson’s method this is even more of a problem;
the scale chosen determines the sizes of the shapes detected.

• Most difference methods have the deficiency that they only use derivative
information of a single order. In Danielsson’s method this is also true; only
the second-order derivative information is used and first-order information
is ignored.

The main aims of this thesis are the following:

• Solve the problem of the algorithm returning a shape parameter for shapes
it cannot detect. The solution to this problem will be covered in Chapter 4.

• Find a way to incorporate first derivative information. This problem will
be partially addressed in Chapter 4.

• Visualise the information returned by the algorithm. A solution is described
in Chapter 5.

• Find a way of selecting the scale to use. A solution is described in Chapter 6.

• Apply the technique to mammographs. The results are displayed in Chap-
ter 7.



CHAPTER 3

Second-order derivatives of
two-dimensional images

This chapter provides details of Danielsson’s algorithm for two-dimensional im-
ages. The description begins with a theoretical discussion treating the intensity
function as continuous. Next, implementation issues are discussed for a discre-
tised image. A Gaussian is used as a regularising function. Finally the resultant
filters are examined to show how they work.

3.1 Theory

The aim of this discussion shows how the second derivative operators gxx, gyy,
and gxy can be transformed to an orthonormal basis that is rotationally invariant
and can be used to extract shape, orientation, and magnitude information. Let
f(x, y) be a continuous two-dimensional scalar field with (x, y) being a point in
the image. To determine the derivatives an operator is applied to the intensity
function f(x, y). For this algorithm the three second derivatives fxx, fyy and fxy

are required.
Assume that there exists a regularising function h(r) (r2 = x2 + y2) that

when applied to the image reduces noise by taking a weighted average of all
values local to a point. The usual function used for this is a two-dimensional
Gaussian. Whatever function is used it should be circularly symmetric. The
operators used to extract second-derivative information are described as:

gxx =
∂2

∂x2
h(r),

gyy =
∂2

∂y2
h(r), and

gxy =
∂2

∂x∂y
h(r).

A two-dimensional Fourier transform is applied to the above equations with the

9



3. Second-order derivatives of two-dimensional images 10

Fourier transform of h(r) being H(%):

Guu = −4π2u2H(%),

Gvv = −4π2v2H(%), and

Guv = −4π2uvH(%).

Then convert to polar coordinates u = % cos ϕ, v = % sin ϕ.

Guu = −4π2%2H(%) cos2 ϕ,

Gvv = −4π2%2H(%) sin2 ϕ, and

Guv = −4π2%2H(%) cos ϕ sin ϕ.

For the following, let it be assumed that the inner product is a double integral
over % and ϕ. The operators Guu, Gvv, and Guv are not orthonormal, as shown in
Appendix B.2. To generate a set of orthonormal basis functions, specific linear
combinations of the above operators are used. This operation is indicated below:







B20

B21

B22





 =

√

1

3







1 1 0√
2 −

√
2 0

0 0
√

2













Guu

Gvv

2Guv





 (3.1)

Expanding equation(3.1) the following basis functions are obtained.

B20 = −4π2%2H(%)

√

1

3
(cos2 ϕ + sin2 ϕ) = −4π2%2H(%)

√

1

3
, (3.2)

B21 = −4π2%2H(%)

√

2

3
(cos2 ϕ − sin2 ϕ) = −4π2%2H(%)

√

2

3
cos 2ϕ, (3.3)

B22 = −4π2%2H(%)

√

2

3
(2 cos ϕ sin ϕ) = −4π2%2H(%)

√

2

3
sin 2ϕ. (3.4)

The functions B20, B21, B22 are orthonormal (this is shown in Appendices B.3,
B.4). As the inverse Fourier transform is linear, the operators are also orthonor-
mal in the spatial domain. Let f2 = (f20, f21, f22) be the values returned by the
orthonormal operators in the spatial domain. It is the properties of the vector f2
that determine shape, shape-orientation and second-derivative magnitude using
the derotation scheme mentioned in section 2.3.2. The two orientation angles of
f2 represent the shape orientation and shape type. Rotating f2 onto a coordinate
plane in 3D produces the shape orientation ϕ. This also gives a vector f̂2 with
two non-zero values. Rotating f̂2 onto another coordinate plane gives the general
shape type λ. This leaves a single non-zero value a, the magnitude of f2; this
is the second derivative magnitude. Figure 3.1 shows how λ and ϕ relate to the
operators’ responses.
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Figure 3.1: Diagram indicating how the vector f2 relates to shape and orientation. The
shapes shown around the outside of the sphere show how shape changes with changing
λ and constant ϕ.

3.2 Implementation

To implement Danielsson’s algorithm, filters need to be generated that can be
used to extract second derivative values. Firstly, the second derivatives of the
Gaussian function are calculated. Let g(x, y) be the two-dimensional Gaussian
with a standard deviation

√
σ value of one, the second derivative operators gxx,

gyy, and gxy are calculated as follows.

gxx =
x2 − 1

2π
exp

(

−x2 − y2

2

)

, (3.5)

gyy =
y2 − 1

2π
exp

(

−x2 − y2

2

)

, and (3.6)

gxy =
xy − 1

2π
exp

(

−x2 − y2

2

)

. (3.7)

The three filter masks are generated by sampling these functions in a local
area around the origin. The results in this thesis are produced by sampling
to a radius of three standard deviations as a local area. The sampling density
determines the size of the filter, which in turn determines the size of the shapes
detected. If the filter values do not sum to zero (because of discretisation) then
all the values of the filters are offset so that they do.

The filters are convolved with the image to produce the second derivatives
of the image fxx, fyy, and fxy. These are orthonormalised via the matrix in
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equation(3.1) to give f2.

f2 =







f20

f21

f22





 =

√

1

3







1 1 0√
2 −

√
2 0

0 0
√

2













fxx

fyy

2fxy







The shape factor λ is:

λ = arctan





√

(f 2
21 + f 2

22)

f20



, (3.8)

the shape orientation ϕ is:

ϕ = −1

2
atan(f22, f21), (3.9)

and the second derivative magnitude a is:

a =
√

f 2
20 + f 2

21 + f 2
22. (3.10)

Figure 3.2: Images of the different canonical shapes.

Figure 3.2 shows how the values of λ correspond to different shape type. The
λ variable is continuous so there is a continuous change in shape as λ changes
from 0 to π. In Figure 3.2, starting with a circular negative blob (λ = 0), as λ
increases the blob elongates, becoming elliptical and starts resembling a negative
line. Then the ends of the line start flaring out to form a negative ridge. As λ
approaches π/2 the negative ridge becomes a saddle. Increases to λ after this
produce positive shape types, with orientation changed by π/2.

3.3 Properties of the filters

Filter f20 (see Figure 3.3) is a scaled Laplacian. It is circularly symmetric and
so cannot detect the orientation of the shape in question; rather it detects the
degree of “blobbyness”. The other two filters f21 and f22 shown in Figures 3.4
and 3.5 have a saddle shape, and are offset at 45 degrees to each other. These
two filters return the orientation of the current shape; they also give the degree
of “saddleness”.
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Figure 3.3: Surface plot of filter f20.
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Figure 3.4: Surface plot of filter f21.
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Figure 3.5: Surface plot of filter f22.



CHAPTER 4

Suppressing false positives

Danielsson’s algorithm can produce false positives; it returns a shape parameter
for shapes it cannot detect (shapes not in the range of negative blob to saddle to
positive blob). For example at points where a step edge exists the algorithm will
detect this as a line feature. To solve this problem a confidence factor is calculated
for each pixel in the image. The confidence factor is the match between the shape
detected and the actual shape in the image. Two ways of generating a confidence
factor were tried: the first worked poorly, but the second gave impressive results.

The first attempt used the second derivative magnitude as a confidence factor.
This value was believed to confirm shape because the second derivative magnitude
is a good detector of even symmetry. The shapes detected by Danielssons’s
algorithm are all even-symmetric because second derivative filters have been used.
So a strong second derivative magnitude should suggest being near one of the
canonical shapes in Table 3.2. Also in areas without features, that is in blank
areas, the algorithm will return a shape value. In such areas the second derivative
magnitude tends to zero, indicating no shape in that area. Unfortunately, it was
found that there were many features that had high second derivative magnitude,
but had no resemblance to the canonical shapes. Danielsson’s algorithm cannot
detect all even-symmetric shapes, only a subset of them.

The second approach tried was to generate a spatial correlation value as a
confidence factor between a local area in the image and a reconstructed image
of the shape indicated by the algorithm. The reconstruction is generated using
the values returned by the basis filters f20, f21, and f22. When these values are
multiplied by the basis filters and summed a reconstructed image is produced ap-
proximating the feature indicated by the algorithm. Figure 4.2 shows an example
of the reconstructed images of all the local areas of the saddle image shown in
Figure 4.1. Note that the algorithm gives a false indication of shape where there
is a large first derivative, that is, along step edges.

Once the local image is reconstructed it is compared with the original lo-
cal image. This is done using the following normalised correlation formula by
Faugeras [5]:

τ =
1

K

h
∑

u=0

w
∑

v=0

[I1(u, v) − I1][I2(u, v) − I2],

15
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where

τ is the correlation value,

h is the height the correlation window,

w is the width the correlation window,

I1,I2 are the original and reconstructed window areas of the images respectively,

I1, I2 are the means within the window areas of the original and reconstructed
images respectively,

K is the normalization factor K = hwσ1σ2, where σ1 and σ2 are the standard
deviation of I1 and I2 respectively.

This formula gives high correlation only in localised areas of the canonical shapes.
The results are shown in Chapter 5.

4.1 Incorporating the first derivatives

Danielsson’s algorithm can detect only a subset of symmetric shapes, which
causes the problem of false positives. If first derivative information could be in-
corporated into the process then a greater variety of shapes would be detectable.
Including the first derivative operators fx and fy would allow for two new shape
parameters to be derived. Where currently there is a single λ value controlling
shape there now would be three values. This would give a three-dimensional
shape space that would need to be mapped to colour.

If third-, fourth- or even higher-order derivative information could be included
then even more shape parameters would be generated. Each added parameter
would add to the dimensions of the shape space and may result in a greater range
of detectable shapes. Just as the Taylor series approximates continuous functions
by using derivative information of different orders, in the same way the image
intensity function could be approximated. If all orders of derivatives could be
included then all possible shapes could be classified and detected.

The problem then is finding a way of including the other derivative orders
of information. We start by considering adding first-order information. The
following is the derivation of the first-order operators:
Using h(r) as the Gaussian regularising function, let

gx =
∂

∂x
h(r), and

gy =
∂

∂y
h(r).

Applying the Fourier transform, gives

Gu = 2πiuH(ρ), and

Gv = 2πivH(ρ).
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Figure 4.1: Original 21x21 image of a saddle.

Figure 4.2: Reconstructed 17x17 images from summed filter responses to a saddle shape
(Image size 357x357).
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Converting to polar coordinates u = ρ cos (ϕ) and v = ρ sin (ϕ), gives

B10 = 2πiρ cos (ϕ)H(ρ), and

B11 = 2πiρ sin (ϕ)H(ρ).

In Appendices B.5 and B.6 it is shown that the two first-order operators and three
second-order operators are orthonormal. The results of these operators when
applied to the image can be treated as a five-dimensional vector. If a scheme
to derotate this vector could be developed a meaning could be assigned to the
rotation angles. This step is not obvious. Unlike the method in this thesis which
has just three responses, the derotation scheme for five responses has a degree-of-
freedom. The degree-of-freedom allows for five possible solutions after derotation.
In Danielsson’s report [3] this situation is handled for the algorithm applied
to three-dimensional images. In the 3D case there are six responses allowing
for six possible solutions. The response vector is rotated prior to derotation
depending on the position the vector starts in. Unfortunately I can find no way
of implementing this for the five-dimensional situation.

Even if a derotation scheme were to be found it is not known what some
of the angles generated from this process would mean. The angles between our
original second-order axes would mean the same as before, but how would this
information relate to the two new angles that are introduced by having two first-
order axes? The main problem with these angles is that there is no way to get
an intuitive feel for what they represent.



CHAPTER 5

Visualisation of shape

Danielsson’s algorithm described in the previous chapter returns a shape param-
eter λ for each pixel in the image. How can λ be used for feature detection? I
propose to use the shape parameter to colour images according to shape type to
enhance important features in the image.

One obvious way of colouring the image would be to assign a colour to each
of the base shapes in Table 3.2. A pixel would be coloured based on the shape
its λ value is closest to. Unfortunately this gives misleading results, as pixels
can be assigned a shape colour when really the shape is somewhere between two
classifications. A continuous allocation of colour is required to represent the range
of shapes that are detectable. The solution is to use a hue, saturation, and value
(HSV) colour scheme, and map the λ value to hue.

5.1 Assigning hue, saturation, and value

A simple way to assign hue is to map λ linearly to the entire hue scale. Un-
fortunately this gives poor results because the hue scale wraps around to the
same colour. This means that two of the canonical shape types are given the
same colour resulting in poor contrast. A better solution is to assign the primary
colours red, green, and blue to three of the shapes. Then intermediate hues can
be chosen to cover other shape types.

The canonical shapes in Figure 3.2 all have “perfect mathematical” represen-
tations as quadratic surfaces as shown in Table 5.1. Figure 5.1 illustrates the
shape reconstructions from the filters f20, f21, f22. Examining the line and ridge
shapes in this diagram shows that the human eye does not recognise these shapes
as being “perfect mathematical” representations. However the blob and saddle
shapes are easily distinguishable from other shapes in the range because of their
symmetry. Therefore, I use the primary colours blue, green, and red to represent
positive blob, saddle, and negative blob respectively. Intermediate hues are in-
serted between blue and green, and red and green colours to give a continuous
change in colour. The line and ridge features are not assigned any particular hue
value.

19
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Shape type Name Quadratic Representation

-ve blob elliptic paraboloid z = x2

k2 + y2

k2 ; k > 0

-ve line elliptic paraboloid limm→0 z = x2

l2
+ y2

m2 ; l > 0,m > 0

-ve ridge -ve hyperbolic paraboloid z = − y2

k2 + x2

k2 ; k > 0

saddle hyperbolic paraboloid liml,m→0 z = y2

m2 − x2

l2
; l > 0,m > 0

-ve ridge hyperbolic paraboloid z = y2

k2 − x2

k2 ; k > 0

-ve line -ve elliptic paraboloid limm→0 z = −x2

l2
− y2

m2 ; l > 0,m > 0

-ve blob -ve elliptic paraboloid z = −x2

k2 − y2

k2 ; k > 0

Table 5.1: Mathematical representations of canonical shapes

Figure 5.1: Reconstructed canonical shapes from summed filters

The saturation of each pixel is set according to the confidence factor such
that shapes that exist in the original image are brightly coloured, and pixels with
lower confidence factors have washed out colours, typically in areas where the
first derivative is large. The “value” of the HSV colourmap is set to one for all
pixels. The colour map shown in figure 5.2 shows how this is done.

5.2 Results

The method was tested on the image shown in Figure 5.3. The results are shown
for an 11x11 size filter in Figure 5.4 along with a diagram of the colour map used
in Figure 5.2. The resulting colour image shows bright colours where canonical
shapes exist. The dark ridges in the face of the baboon, correspond to yellow
lines in the coloured image. Yellow represents the mid-point in the transition
from negative blob to saddle, that is, line-/ridge-like features. The specularity
in the centre of the eyes corresponds to a bright blue dot in the coloured image,
indicating a positive blob. All the shapes detected in the coloured image are
small. If we were to use a larger filter then larger features would be detected.

Unfortunately, the proposed algorithm is not efficient. Let n be the number
of pixels along one side of a square image and f be the number of pixels along
one side of the square filter.

For each pixel:
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Figure 5.2: The colour map used showing saturation and hue.
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Figure 5.3: The original baboon image used to test the algorithm (Image size 512x512).
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Figure 5.4: The resulting baboon image after applying 11x11 filters and colouring using
the HSV scheme.
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calculate shape parameter 3f 2

create filter image 3f 2

calculate std dev f 2

calculate correlation f 2

Total 8f 2

For n2 pixels in the image:
Total complexity O(n2f 2).

If the filter size is large we would expect slow performance from the algorithm.



CHAPTER 6

Scale

An unresolved issue in the study of computer vision is the problem of scale, that
is, choosing the correct size filter to apply to an image. Often the size of the filter
determines what features will be detected. This is easier to resolve when the size
of features to detect is known. An algorithm can have parameters set to make it
a good detector of certain sized features. This approach is easily applied to edge
detectors since sharp edges are by definition very localized. However, without
initial information about the size of the feature there is no way of determining
what size filters to use. What is normally done is to apply many filters of different
sizes and embed them in a structure called a scale space pyramid.

6.1 Scale space animation

Before describing the solution it is instructive to examine a series of images pro-
duced by the HSV colouring scheme at different scales. This series of images can
be animated showing the image changing with increasing scale. The animation
shows how shapes can be embedded inside other shapes; as the scale increases
the interpretation of what is seen completely changes. The frames of a animation
generated from Figure 6.1 are shown in Figure 6.2. They show how the detection
of new features reduces as scale increases. This agrees with Koenderink’s use of
an exponentially increasing scale [7].

A possible use for scale space animation could be to detect cancers in X-ray
images. The radiologist could play the animation and stop it whenever a bright
shape response occurs in an unexpected place. The time in the movie where
the shape is brightest could indicate the size of the cancer. If a cancer has a
particular shape then the movie could automatically stop whenever such a shape
appears above a certain confidence level.

6.2 Combining different scales

To combine results from different scales I propose to assign pixel color based the
“best” scale to use. The confidence factor introduced in Section 5.1 can be used

25
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Figure 6.1: Image of flower pot used to produce a scale space animation (Image size
100x100).

Figure 6.2: Frames of the scale space animation. Filter sizes range from 5 to 101.
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Figure 6.3: Plot of different sized filters in the Fourier domain.

as a way to choose the “best” scale. As different sized filters are applied the
shape value with the highest confidence factor is stored ready for a final output
image.

A series of different sized filters that can detect features at all scales needs
to be determined. Empirically a 5x5 filter will detect features as small as one
pixel in size. We need to find an efficient way to increase the size of the filters
beyond 5x5. An exponential increase in scale is proposed by Koenderink [7]. In
this thesis a factor of 1.5 has been used to increase filter sizes. This generates
the series of filter sizes: 5, 7, 11, 17, 25, 37, 57, 85, 128 that is used to generate
my resulting images. To show that the series will detect features at most scales
the filters have been plotted in the Fourier domain. Figure 6.3 shows that the
series covers the Fourier spectrum almost completely.

The result of applying this process to the baboon image is shown in Figure 6.4.
When compared to Figure 5.4 there is considerable improvement over using a
single scale. In Figure 5.4 the resulting image does not show much of the detail
of the original image. In Figure 6.4 the image is much fuller, and shapes of a
greater diversity are brightly coloured indicating the images structure.
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Figure 6.4: Baboon result processed at multiple scales.



CHAPTER 7

Application to mammography

Radiologists have a difficult task identifying cancers in X-ray images of breasts;
it is possible to miss the cancer amongst the other features in the image. To
overcome this problem much effort has gone into enhancing X-ray images to
make the radiologist’s job easier. Often this involves removing small features
from the image such as veins and arteries in an effort to clean up the image.
However, if it were possible to simply enhance the cancers in the image or at
least contrast them with other features then that would also be helpful.

The method developed in this thesis can contrast different features using
colour. It has been applied to a mammograph of a normal breast in Figure 7.1
and the resulting image is Figure 7.2. It has also been applied to a mammograph
of a cancerous breast in Figure 7.3 and the resulting image is Figure 7.4. Veins
and arteries are all shown in bright cyan allowing the viewer to easily distinguish
them from other features in the image. Cancers show up as white patches in
mammographs and as bright blue responses in the shape processed image. Un-
fortunately, other non-cancerous features in the image also result in bright blue
colours. Perhaps the coloured images should be used as a starting point for the
radiologist before looking at the original image.

Another way to enhance the image is to remove the veins and arteries. Record-
ing where there are pixels with shape parameter values indicating a line-/ridge-
like features with a high correlation values. The intensity of the central pixel of
the reconstructed image for the local area around that pixel is recorded. This
is the reconstructed image used for spatial correlation mentioned in Section 5.1.
The recorded intensities are subtracted from the original image to remove veins
and arteries. This idea has been applied to Figure 7.5 resulting in Figure 7.6.
The resulting image shows a reduction in the veins and arteries in the image.
However, a closer examination shows that there are dark outlines around posi-
tions where veins and arteries have been removed. This problem arises because
there is no easy way to determine acceptable correlation values. For this reason
not all pixels that make up lines/ridges in the image are detected. Lowering the
acceptable threshold for shape correlation would fail as the method would remove
veins where no veins exist.

29
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Figure 7.1: Mammograph of normal breast. (Image size 474×719)
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Figure 7.2: Coloured result for the mammograph.
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Figure 7.3: Mammograph of cancerous breast. The cancer is in the bottom centre.
(Image size 379×462)
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Figure 7.4: Coloured result for the mammograph. The cancer is a bright blue patch.
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Figure 7.5: Original mammograph. (Image size 260×389)

Figure 7.6: Mammograph with veins and arteries suppressed.



CHAPTER 8

Conclusion

Of the five main problems stated at the end of Chapter 2, four have been suc-
cessfully resolved.

• The problem with the many-to-one shape classification has been solved by
using a spatial correlation as a confidence factor.

• I have proposed a partial solution for incorporating first derivative infor-
mation into the technique. Success of this rests with the development of a
five-dimensional derotation algorithm and should be the subject of further
research.

• By mapping the shape parameter to hue and the confidence to saturation
we can visualize the shape information.

• The problem of scale has been resolved by using multiple filters that increase
in size exponentially. The “best” scale for any pixel is the one with the
highest confidence value. This method has been applied to some grey scale
images and the results highlight important features from these images.

• The method has been applied to mammograph images and the results con-
trast veins, arteries, and cancers.

The problems stated are not the only areas that require investigation. Other
enhancements could be made to improve the method.

Danielsson [3] shows in his report that the algorithm can be applied to
volumetric images. Modifying the method outlined in this thesis to apply to
three-dimensional images should not be difficult. The two-dimensional Gaussian
would now be three-dimensional. The method for three dimensions described
in Danielsson’s report uses the six second-order derivative operators to calcu-
late six orthonormal responses. After derotation the values extracted represent
three Euler angles which are the shape’s orientation, two shape parameters, and
a second-order magnitude. Then a confidence factor could be calculated using a
three-dimensional spatial correlation. This correlation would be calculated be-
tween a local volume of the original image and a reconstructed image generated
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from a weighted sum of the six three-dimensional filters. The two shape param-
eters and confidence factor could be mapped to a three-dimensional colour map
(instead of the two-dimensional map used in this thesis).

No work into improving the efficiency of the algorithm was done. As it is, the
algorithm has a high complexity and requires a great deal of computing power
to process large images. Reducing the complexity would make the method much
more useful for application in industry.
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APPENDIX A

Research proposal

Title: The Investigation of 2nd Derivative Operators on 3D/Volumetric Data
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Keywords: Rotation invariance, Second Derivatives, 3D volumes, Segmentation,
3D Shapes, Orientation, Confocal Microscope, Spherical Harmonics, Orthogonal-
ity.

C. R. Classification : I.4.6, I.5.4

A.1 Background

This project will implement an image processing algorithm designed by Per-
Erik Danielsson [2]. The algorithm finds second order derivative information in
the image to detect features normally not found by first order methods. For
each feature shape, orientation and magnitude information are returned by this
algorithm.

Many phenomena in nature are described by second order differential equa-
tions. These include heat conduction, fluid mechanics and all forms of wave
motion. In situations like these, it seems logical that image data to be analyzed,
will have information that can only be extracted using second derivative meth-
ods. Second order methods have many characteristics that make them different
from first order methods.

First derivative methods only detect odd symmetric intensity changes, while
second derivative methods detect even symmetric intensity changes. This means
that first and second derivative methods can be considered complementary in
nature. For example, the local energy feature detector uses a pair of filters one of
which is for even symmetric changes and the other for odd symmetric changes [9].
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First derivative methods only give information about gradient strength, and
orientation. The second order method in addition, gives information about the
general shape of the feature around the point we are looking at. Some classi-
fications in 3D include vortices, strings, blobs, and planes. Shape information
is useful in segmenting and visualizing 3D images. For example, automatically
identifying an organ inside a patient. We could only show regions having a spe-
cific type of local shape and use this to find boundary positions of the organ in
the body.

A.2 Aims

The project will aim to achieve the following.

• An implementation of the algorithm for 2D images, and a comparison with
first order methods. (5 weeks)

• Extend the implementation to work with 3D images and again make a
comparison with first order methods. (11 weeks)

• Apply the program to 3D confocal microscope images. Supplied by Chris
Pudney from his work in the Pharmacology Department. Use the second
order information for visualization and segmentation. (5 weeks)

• The thesis will be written summarizing the results obtained. (6 weeks)

A.3 Methods

The algorithm first finds the six second derivatives fxx, fyy, fzz, fxy, fxz, and
fyz using a filter for each point in the image. These quantities will change based
on the orientation, magnitude, and shape of the feature. To identify the feature
shape without regards to its orientation we convert these values to be rotationally
invariant.

The six second derivatives of the function need to be viewed as a six di-
mensional space. Unfortunately the quantities are not orthogonal in general.
To convert the quantities to be orthogonal they are transformed to spherically
harmonic components called f20, f21, f22, f23, f24, and f25.

Next the orientation of the feature can be determined using a procedure
named Derotation. Now that we have orthogonal axiss in our space, the vector
f20–f25 can now be rotated onto three of the coordinate planes and a magnitude
extracted. The angles we use in this rotation are the Euler angles of the feature.
After the three rotations there are three non zero quantities left. Then these
quantities are combined to give a total derivative magnitude.

In first derivative methods only a single quantity indicating derivative strength
is returned. The fact that we now have three values for second derivatives shows



A. Research proposal 41

that more information is returned from this method. The extra information is
used to identify the general shape of the feature.

The three magnitude values are used to derive two angles λ1,λ2 which are used
to determine an orientation in the three dimensional space of the magnitudes. It
is this orientation that indicates the feature shape. If you can imagine a sphere
with an arrow pointing out of it from its centre, the arrow points at different
shape type areas on the spheres surface.

The project will be attempted by following these steps.

• Filter the image to obtain the 2nd derivative information.

• Find the orientation of features that are revealed in the image.

• Extract the second derivative magnitude.

• Then determine the shape type for each feature.

The above steps will be implemented for both 2D and 3D images on Matlab.



APPENDIX B

Mathematical Proofs

B.1 Derivation of H(ρ)

Let our regularising function h(x, y) be equal to the Gaussian.

h(x, y) =
1

2π
exp

(

−x2 − y2

2

)

Taking a Fourier transform with respect to x.

ĥ(u, y) =

√
2π

2π
exp

(

−u2 − y2

2

)

Taking a Fourier transform with respect to y.

H(u, v) =
2π

2π
exp

(

−u2 − v2

2

)

= exp

(

−u2 − v2

2

)

Converting to polar coordinates let ρ2 = u2 + v2

H(ρ) = exp

(

−ρ2

2

)

B.2 Proof that Guu, Gvv, and Guv are not orthonormal

Proof by counterexample Guu,Gvv:
∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ) cos (2ϕ)2)(−4π2ρ2H(ρ) sin (2ϕ)2)dϕdρ

=
∫

∞

0

∫ π

−π
16π4ρ4H(ρ)2 cos (2ϕ)2 sin (2ϕ)2dϕdρ

=
3

2
π

11

2

Therefore Guu, Gvv, and Guv are not orthogonal and therefore not orthonormal.
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B.3 Proof that B20, B21, and B22 are orthogonal.

B20,B21:

∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

1

3
)(−4π2ρ2H(ρ)

√

2

3
cos (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

16
√

2π4

3
ρ4H(ρ)2 cos (2ϕ)dϕdρ

= 0

B20,B22:

∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

1

3
)(−4π2ρ2H(ρ)

√

2

3
sin (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

16
√

2π4

3
ρ4H(ρ)2 sin (2ϕ)dϕdρ

= 0

B21,B22:

∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

2

3
cos (2ϕ))(−4π2ρ2H(ρ)

√

2

3
sin (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

32π4

3
ρ4H(ρ)2 cos (2ϕ) sin (2ϕ)dϕdρ

= 0

B.4 Proof that B20, B21, and B22 are normalised.

B20:
∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

1

3
)2dϕdρ

=
∫

∞

0

∫ π

−π

16π4

3
ρ4H(ρ)2dϕdρ

= 1

B21:
∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

2

3
cos (2ϕ))2dϕdρ

=
∫

∞

0

∫ π

−π

32π4

3
ρ4H(ρ)2 cos (2ϕ)2dϕdρ

= 1
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B22:
∫

∞

0

∫ π

−π
(−4π2ρ2H(ρ)

√

2

3
sin (2ϕ))2dϕdρ

=
∫

∞

0

∫ π

−π

32π4

3
ρ4H(ρ)2 sin (2ϕ)2dϕdρ

= 1

All the above used the same scaling factor for the regularising function H(ρ).

B.5 Proof that the first and second derivative operators are

orthogonal

B10,B20:
∫

∞

0

∫ π

−π
(2πiρ cos (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

1

3
)dϕdρ

=
∫

∞

0

∫ π

−π

−8iπ3

√
3

ρ3H(ρ)2 cos (ϕ)dϕdρ

= 0

B10,B21:

∫

∞

0

∫ π

−π
(2πiρ cos (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

2

3
cos (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

−8
√

2iπ3

√
3

ρ3H(ρ)2 cos (ϕ) cos (2ϕ)dϕdρ

= 0

B10,B22:

∫

∞

0

∫ π

−π
(2πiρ cos (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

2

3
sin (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

−8
√

2iπ3

√
3

ρ3H(ρ)2 cos (ϕ) sin (2ϕ)dϕdρ

= 0

B11,B20:
∫

∞

0

∫ π

−π
(2πiρ sin (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

1

3
)dϕdρ

=
∫

∞

0

∫ π

−π

−8iπ3

√
3

ρ3H(ρ)2 sin (ϕ)dϕdρ

= 0
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B11,B21:

∫

∞

0

∫ π

−π
(2πiρ sin (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

2

3
cos (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

−8
√

2iπ3

√
3

ρ3H(ρ)2 sin (ϕ) cos (2ϕ)dϕdρ

= 0

B11,B22:

∫

∞

0

∫ π

−π
(2πiρ sin (ϕ)H(ρ))(−4π2ρ2H(ρ)

√

2

3
sin (2ϕ))dϕdρ

=
∫

∞

0

∫ π

−π

−8
√

2iπ3

√
3

ρ3H(ρ)2 sin (ϕ) sin (2ϕ)dϕdρ

= 0

B.6 Proof the first derivative operators are normalised

B10:
∫

∞

0

∫ π

−π
(2πiρ cos (ϕ)H(ρ))2dϕdρ

=
∫

∞

0

∫ π

−π
−4π2ρ2 cos (ϕ)2H(ρ)2dϕdρ

= 1

B11:
∫

∞

0

∫ π

−π
(2πiρ sin (ϕ)H(ρ))2dϕdρ

=
∫

∞

0

∫ π

−π
−4π2ρ2 sin (ϕ)2H(ρ)2dϕdρ

= 1

All the above used the same scaling factor for the regularising function H(ρ).


