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Abstract

Video sequence synchronization is necessary for any computer vision application

that integrates data from multiple simultaneously recorded video sequences. With

the increased availability of video cameras as either dedicated devices, or as com-

ponents within digital cameras or mobile phones, a large volume of video data is

available for processing by a growing range of computer vision applications that

process multiple video sequences. To ensure that the output of these applications

is correct, accurate video sequence synchronization is essential.

Whilst hardware synchronization methods can embed timestamps into each se-

quence on-the-fly and require no post-processing, they require specialized hardware

and it is necessary to set up the camera network in advance. On the other hand,

computer vision-based software synchronization algorithms can be used to post-

process video sequences recorded by cameras that are not networked, such as com-

mon consumer hand-held video cameras or cameras embedded in mobile phones, or

to synchronize historical videos for which hardware synchronization was not possi-

ble.

The current state-of-the-art software algorithms vary in their input and out-

put requirements and camera configuration assumptions. Many algorithms operate

without requiring knowledge of the geometry relating the two cameras, however,

for most of these algorithms it is necessary to specify the sequences’ frame rate

ratio. Only a handful of algorithms exist that recover the frame rate ratio of two

sequences, and of these, most require the cameras’ geometry to be known. Most

synchronization algorithms require frame-to-frame object motion or object trajec-

tories throughout an entire sequence to be provided as input data from which the
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synchronization can be recovered. In this thesis, I present three algorithms for re-

covering both the frame offset and the ratio of the frame rates of pairs of video

sequences. One of my algorithms does not require trajectory data as input, and

only one of the three algorithms requires weak camera calibration.

Firstly, I present an algorithm that uses the motion of a single tracked object to

synchronize two video sequences recorded by stationary cameras with fixed intrinsic

parameters. The algorithm is unique in that it synchronizes a pair of video sequences

using the trajectory of a single object tracked throughout each sequence and does

not require camera calibration. A coarse-to-fine approach is used. At the coarse

level, each sequence is divided into a number of sub-sequences, and corresponding

sub-sequences from each sequence are determined. From this, an initial estimate of

the ratio of frame rates is proposed and a voting scheme is used to provide bounds

on the frame offset. The fine level of synchronization involves a search for the frame

offset and frame rate ratio that minimize a measure of synchronization based on

epipolar geometry. It is shown that this measure, whilst not new, is preferred for

use in place of the reprojection error used by many synchronization algorithms.

Next, I describe an approach that synchronizes two video sequences where an

object exhibits ballistic motions. Given the epipolar geometry relating the two

cameras and the imaged ballistic trajectory of an object, the algorithm uses a

novel iterative approach that exploits object motion to rapidly determine pairs of

temporally corresponding frames. This algorithm accurately synchronizes videos

recorded at different frame rates and takes few iterations to converge to sub-frame

accuracy. Whereas the method presented by the first algorithm integrates tracking

data from all frames to synchronize the sequences as a whole, this algorithm recovers

the synchronization by locating pairs of temporally corresponding frames in each

sequence.

Finally, I introduce an algorithm for synchronizing two video sequences recorded

by uncalibrated stationary cameras. This approach is unique in that it recovers

both the frame rate ratio and the frame offset of the two sequences by finding

matching space-time interest points that represent events in each sequence; the

algorithm does not require object tracking. RANSAC-based approaches that take
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a set of putatively matching interest points and recover either a homography or a

fundamental matrix relating a pair of still images are well known. This algorithm

extends these techniques using space-time interest points in place of spatial features,

and uses nested instances of RANSAC to also recover the frame rate ratio and frame

offset of a pair of video sequences.

In this thesis, it is demonstrated that each of the above algorithms can accurately

recover the frame rate ratio and frame offset of a range of real video sequences.

Each algorithm makes a contribution to the body of video sequence synchronization

literature, and it is shown that the synchronization problem can be solved using a

range of approaches.
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Preface

Some of the work presented in this dissertation has been already been published.

At the 2005 Digital Image Computing: Techniques and Applications conference,

I introduced an algorithm that uses the motion of a single object to recover the

frame offset of two video sequences recorded by cameras with unknown epipolar

geometry [49]. Later, I extended this algorithm to also recover the frame rate ratio

of the two sequences. This extended algorithm is presented in Chapter 3.

At the Asian Conference on Computer Vision in 2006, I presented a paper [47]

that forms the basis of the basic algorithm given in Chapter 4. The extension to

the algorithm presented in Chapter 4 was developed later and is introduced in this

thesis.

A paper presented at the 2007 IAPR Conference on Machine Vision Applica-

tions [48] describes the general case of the algorithm presented in Chapter 5. The

special case of the algorithm as described in Chapter 5 is introduced in this disser-

tation and has not been published previously.

Each of these papers was co-authored by myself and my two supervisors, Dr. Du

Huynh and Dr. Peter Kovesi. In each case, I was the principal contributing author.
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Chapter 1

Introduction

The aim of computer vision researchers is to enable computers to understand the

3D world as captured by one or more cameras in a series of 2D images or video

sequences. In today’s world, still and video cameras can be found everywhere.

The increased availability of cameras has been accompanied by an increase in the

volume of captured image and video data. As such, techniques for processing such

a large volume of data are essential. Computer vision algorithms for recovering

structural information from still images are well-developed and more recently, many

applications for processing video sequences have been introduced.

Video sequence synchronization is a fundamental problem required to be solved

in order to allow video data from multiple independently recorded sources to be ac-

curately integrated into a single model. For a simple demonstration of this, consider

the human visual system. We take it for granted that the world viewed through

each of our eyes is a snapshot of the world at that particular instant. However,

consider what we would see if the visual information from one eye was delayed.

Each eye would view slightly different world ‘models’, rather than different views

of the same world model, and it would be extremely difficult, if not impossible, to

accurately understand the 3D world from these unsynchronized views. Similarly, in

computer vision applications, video sequence synchronization is essential to ensure

consistency in the recovered data.

Many computer vision applications already exist that require video sequence

synchronization and it is expected that many further methods will be developed in
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2 CHAPTER 1. INTRODUCTION

the coming years. Video surveillance is a common example of a network of many

video cameras recording a scene. In playing back a large number of video sequences

for simultaneous viewing, it is advantageous if the videos are synchronized such that

simultaneously recorded frames from the video sequences are displayed in sync.

Other applications may require synchronization for quantitative rather than

qualitative purposes. Virtualized reality [15] involves performing an action in front

of a network of cameras and reconstructing a 3D snapshot of the action at each time

instant. Accurate video synchronization is essential in order to ensure consistency

in the structure recovered from such video sequences. This is demonstrated in

Figure 1(a), where a 3D model is successfully reconstructed from two synchronized

cameras. However, the unsynchronized cameras in Figure 1(b) provide inconsistent

data and a consistent 3D model cannot be reliably recovered.

Video sequence synchronization can also be useful in the comparison of human

motions [31], such as dancing routines. Rao et al. demonstrated that the perfor-

mances of two dancers executing the same actions can be analyzed such that the

relative rates of execution of the actions can be recovered and potentially used as a

training tool.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Sequence 1

Sequence 2

3D
reconstruction

(a) Synchronized sequences

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Sequence 1

Sequence 2

3D
reconstruction ? ? ? ??

(b) Unsynchronized sequences

Figure 1: In (a), the two video sequences are synchronized and the recovered 3D
structure is consistent with the data from both views. In (b), a frame misalignment
exists and the sequences are not synchronized. As a result of this, the 3D struc-
ture will be affected and the recovered orientations of the person’s arms may be
nonsensical.
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The above applications use video sequences recorded in a controlled environ-

ment. A computer vision application that has taken advantage of the recent pro-

liferation of digital cameras and online distribution of photos is the Photo Tourism

system [37] developed by Snavely et al. Their system collects a large number of

photos of a landmark from which a sparse 3D reconstruction of the landmark and

the relative camera locations are automatically recovered. The user can interact

with the system via a GUI that displays the relative positions of each camera and

the photos taken at each location. As video cameras become increasingly popular

and are embedded in ubiquitous devices such as mobile phones, it is possible that

demand may arise for a similar application for processing many video sequences of

an event recorded independently by people in different locations.

Video synchronization can be performed online in hardware or offline in software;

this is discussed in more detail in the following chapter. I define the problem of video

sequence synchronization as the process of recovering the temporal relationship

between two or more video sequences. Most algorithms focus on solving for a linear

temporal relationship between two video sequences. In this case, an initial temporal

offset, ∆, exists between the sequences, and each camera may film at different frame

rates; let α denote the ratio of the frame rates of the two cameras. Together, let α

and ∆ be known as the synchronization parameters of the pair of sequences. Then

the two video synchronization problem can be expressed mathematically via the

synchronization equation:

j = αi + ∆, (1)

where i and j denote the indices of frames from each sequence recorded at the same

instant in time. Synchronizing a network of multiple (i.e., more than two) video

sequences can be approached in a pairwise manner.

In some applications, it may be useful to solve for a non-linear temporal re-

lationship between sequences, though this is uncommon. For example, instead of

synchronizing two videos of an action or event captured simultaneously by two

cameras, the objective may be to synchronize videos of similar actions occurring

at different times. Rao et al. [31] presented an example of this where the same

action was performed by different dancers, with the rate of motion varying between
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dancers. In this thesis, unless otherwise stated, I consider only a linear temporal

relationship between sequences and as such, recovering the synchronization means

that the linear relationship encapsulated in Equation (1) is solved.

1.1 Thesis structure and contributions

In this dissertation, I present three algorithms for synchronizing pairs of video

sequences recorded by stationary cameras with fixed intrinsic parameters. My al-

gorithms extend known techniques and introduce new approaches to the synchro-

nization problem. Although I only consider synchronizing pairs of sequences in my

algorithms, it is envisaged that the algorithms can be trivially extended to allow

synchronization of sets of more than two video sequences in a pairwise manner.

A literature review is presented Chapter 2. I review existing video sequence

synchronization algorithms, and examine the different assumptions made by each

algorithm and the cases in which they can be used.

Next, each of Chapters 3, 4 and 5 introduces one of my synchronization al-

gorithms. I do not summarize them here, instead, I place them into context in

Section 2.3 after presenting the literature review. Each of these chapters is self-

contained in that each chapter firstly presents an algorithm, examines results of

applying that algorithm to various pairs of video sequences, and then discusses

matters relevant to that algorithm.

In Chapters 3 and 4, manual tracking is used to recover the ball’s trajectory in

many video sequences. However, these algorithms are not reliant on manual track-

ing or any other manual inputs; the output of any suitable object tracking algorithm

can be supplied as input for my synchronization algorithms. Just as a feature de-

tection algorithm is not reliant on the camera used to capture the images to be

processed, my algorithms are not reliant on manual tracking. This is demonstrated

in Chapter 3 where the centroid of a moving light source is tracked automatically

throughout some sequences and successful synchronization is achieved. These syn-

chronization algorithms are shown to achieve synchronization when trajectory data

is missing from each sequence, for example, where the tracked object is occluded or
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moves out of the camera’s field of view. However, as with other trajectory-based

synchronization algorithms, it is essential that the object tracker does not produce

outlying data points, e.g., where the tracker loses the object in clutter.

1.2 Notation

Throughout this thesis, the following notation conventions are used:

• The ratio of frame rates of a pair of sequences is always denoted by α.

• The frame offset of a pair of sequences is always denoted by ∆, whose values

are measured in frames.

• The two video sequences are denoted by S and S ′.

• All vectors are column vectors and are denoted by lowercase boldface charac-

ters, e.g., g. Vectors in S ′ are distinguished by a prime, e.g., l′j. Unless stated

otherwise, vectors represent points and lines in homogeneous coordinates.

• Matrices are denoted by uppercase characters in a fixed-width font, e.g., F.

• Ground truth values of the synchronization parameters are denoted by an

overhead bar, i.e., ᾱ and ∆̄ denote the ground truth values of the frame rate

ratio and frame offset, respectively, of a pair of sequences.

In the experiments presented in the following chapters, unless otherwise stated,

the ground truth frame rate ratio was known from the camera settings and

the ground truth frame offset was obtained by manually locating frames in

the sequences in which an event occurred such as a ball bouncing. In the

example illustrated in Figure 2, the ball can be seen bouncing between frames

of a sequence. Therefore, as the location of the bouncing event is available to

half-frame accuracy, the ground truth frame offset for sequences containing a

bouncing ball is accurate to half a frame.
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(a) Frame 200 (b) Frame 201 (c) Frame 202 (d) Frame 203

Figure 2: Four frames from a sequence where the ball bounces between frames. The
ball’s shadow can also be seen, showing that the ball is in contact with the ground
between frames 201 and 202; the bounce event is estimated to have occurred at
201.5 frames into the sequence.

• The recovered synchronization parameters are denoted by a hat, i.e., α̂ and

∆̂ denote the recovered frame rate ratio and frame offset, respectively, of a

pair of sequences.



Chapter 2

Literature review

As outlined in the previous chapter, video sequence synchronization is essential

for an ever-increasing range of applications. A number of video synchronization

methods already exist and of these methods, a clear distinction can be made between

hardware and software based approaches. In this chapter, hardware synchronization

is outlined, and a large number of software synchronization algorithms are reviewed

and compared. Also, the algorithms that I will present in Chapters 3, 4 and 5 are

briefly introduced, and compared and contrasted with relevant algorithms in the

current literature.

2.1 Hardware synchronization

There are several ways in which videos can be synchronized in hardware, however

only a brief mention is given here such that a comparison can be made with software

synchronization methods. One hardware synchronization approach involves sending

a synchronization signal to each camera, and embedding a timestamp in each cap-

tured frame of the recorded sequences [14, 15]. In post-processing, the timestamps

of each frame, and hence the synchronization, can be recovered.

The advantages of using hardware synchronization are that the synchronization

is known exactly and that the amount of post-processing can be minimized. How-

ever, these advantages may be offset by the necessity of specialized and possibly

7
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expensive hardware, and the requirement that the cameras must be set up for syn-

chronization before recording. This procedure may involve laying cables from a

central location to each camera or between cameras, which may not be practical if

the cameras are widely separated or if insufficient time is available to set up the

camera network before recording.

2.2 Software approaches

Software synchronization approaches use visual cues, e.g., lighting changes, or visi-

ble features, such as points on moving objects or object trajectories as a whole, for

synchronization. Advantages of using software synchronization methods include the

ability to synchronize videos without requiring the setup procedure or the equip-

ment necessary for hardware synchronization. However, software synchronization

involves significant offline post-processing of video data, and the approaches may

be restricted in their application. For example, a certain camera model may be

assumed or the ratio of frame rates of pairs of cameras must be known.

There are two general classes of software synchronization algorithms: feature-

based algorithms and direct alignment algorithms. Feature-based algorithms op-

erate by tracking objects or detecting features within sequences. From trajectory

or feature correspondences, an algebraic or geometric error is computed and used

as a measure of synchronization. Direct alignment algorithms do not attempt to

match features between images; rather, most direct alignment methods use pixel

intensities or gradients for synchronization.

2.2.1 Feature-based algorithms

Naturally, many feature-based synchronization methods are based on multiple view

geometry [13]. A homography is a linear transformation that can be used to map

points between two projective views of a reference plane. For scenes containing

motion occurring on a reference plane, a homography can be used for synchro-

nization since a point on the reference plane in one frame will be transferred to

the corresponding location in the corresponding frame in the other sequence if the
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synchronization is known. Alternatively, the fundamental matrix encapsulates the

epipolar geometry relating two cameras; enforcing the epipolar constraint can be

used as method of synchronizing two video sequences containing free motion in 3D

space.

Reid and Zisserman [32] used a homography in synchronizing two videos of a

critical passage of play in a soccer match, where the sequences were recorded at the

same frame rate. Firstly, ground markings were used to estimate the homography

relating the two views; this homography was then used to transfer moving points

(players’ shadows on the ground plane) between views. The two sequences were

aligned by searching for the temporal offset that minimized the reprojection errors

of moving points on the ground plane. Similarly, with object motion occurring

mainly on the dominant ground plane, Stein [39] and Lee et al. [24] synchronized

multiple surveillance videos by estimating a homography for every frame offset;

the offset with the homography that yielded the lowest reprojection error was de-

clared to be the actual frame offset of the two sequences. Nunziati et al. [29] also

synchronized video sequences with motion occurring on the ground plane by track-

ing an object and identifying features on its trajectory. These features were used

to propose temporally corresponding frames from each sequence from which the

frame offset was recovered. The homography relating the views was also estimated

from trajectory information surrounding each trajectory feature. Velipasalar and

Wolf [46] demonstrated an alternative approach to synchronizing sequences contain-

ing motion occurring on a plane, using projective invariants to find initial trajectory

and frame correspondences from which the frame offset was recovered.

A feature-based algorithm by Caspi and Irani [3,4] synchronized two sequences

recorded by cameras with fixed internal parameters filming at a known ratio of

frame rates. The algorithm recovered the temporal offset of the two sequences by

integrating multiple trajectory observations; it also estimated a homography or fun-

damental matrix relating the two views (depending on the type of motion contained

in the scene). Corresponding trajectories from each sequence were proposed based

on shape properties of the trajectories; each trajectory contributed multiple point

correspondences between sequences. A RANSAC-based approach [9] recovered the
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spatial and temporal transformations. At each RANSAC iteration, a proposed

pair of corresponding trajectories were randomly selected. The spatial and tem-

poral transformations were computed by initially performing an exhaustive search

through a range of integer frame offsets, then commencing an iterative process that

alternately refined the temporal offset, and the homography or fundamental matrix

relating the two trajectories. Finally, the spatio-temporal transformations with the

most inlying trajectories (as determined by a distance threshold) were refined using

data from all inlying trajectories. Noguchi et al. [28] described a similar frame-

work for recovering the frame offset of sequences where only one object was tracked

throughout both sequences.

An algorithm developed by Carceroni et al. [1] employed the epipolar constraint

to synchronize N video sequences (for N ≥ 2) recorded by stationary cameras.

A fundamental matrix was firstly estimated for each pairing of sequences with a

reference sequence, using known corresponding stationary points from each view.

Rather than tracking a number of points throughout entire sequences, feature points

were only tracked between consecutive frames. Then, tentative sets of synchronized

frames were proposed where the epipolar constraint was satisfied, i.e., a point in one

sequence crossed the epipolar line due to the proposed corresponding point in the

proposed corresponding frame in another sequence. The frame numbers of these

tentative synchronized frames were used to form points in an N -dimensional space.

A line was fitted to these points via RANSAC; the line encapsulated the ratio of

frame rates and temporal misalignment between all pairs of video sequences.

Pooley et al. [30] solved for the synchronization of two sequences captured by

two moving cameras using a fundamental matrix based algorithm. A set of station-

ary background points tracked through each video sequence was used to estimate

the fundamental matrix between views. Instead of searching through the α − ∆

parameter space, they used a Hough transform on a reparameterized space of α

and ∆, resulting in an estimate of the new parameters. A gradient descent method

was then used to refine the parameters, using reprojection error as a measure of

synchronization.

Tuytelaars and Van Gool [43] also presented a method to synchronize sequences
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captured by two freely moving cameras. In their algorithm, five points undergoing

non-rigid motion were tracked throughout each sequence and matching points from

each sequence were determined. Instead of using a measure of synchronization based

on 2D error (such as reprojection error), their method used a 3D analysis based on

back-projecting lines into a 3D affine space. The distances between 3D lines at each

offset were stored in a compatibility matrix, and from this the temporal offset was

recovered.

Another algorithm for synchronizing sequences captured by moving cameras was

introduced by Lei and Yang [25]. They synchronized three sequences by employ-

ing points, lines, and the trifocal tensor, where the frame rate ratios for pairs of

cameras were known. Points and lines were tracked through each sequence and

matched between sequences. A trifocal tensor was proposed at every pair of integer

frame offsets (one frame offset between sequences 1 and 2, and another offset be-

tween sequences 1 and 3), and the error in reprojecting points and transferring lines

between sequences calculated; the frame offset pair that minimized this error was

proposed as an estimate of the correct synchronization. This estimate was refined

to sub-frame accuracy by using the Levenberg-Marquardt algorithm to minimize

the reprojection and transfer error. Lei and Yang also demonstrated that their al-

gorithm could be extended to synchronize sequences recorded by a network of more

than three cameras, by initially synchronizing 3 sequences, and then synchroniz-

ing further groups of 3 sequences where at least one of the sequences belonged to

the first group of sequences to be synchronized. It was shown that the Levenberg-

Marquardt algorithm could be applied to synchronize such sequences to sub-frame

accuracy.

Whitehead et al. [50] introduced an alternative approach for synchronizing

three or more weakly calibrated stationary cameras. Multiple objects were tracked

throughout each sequence and feature points in each trajectory, such as sharp

changes in direction, were located. An initial estimate of the synchronization pa-

rameters and trajectory correspondences from each sequence were established by

locating inflection points from each sequence that satisfied the epipolar geometry.
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Temporally corresponding frames from all sequences were then determined by locat-

ing frames where the object’s location in all views satisfied the epipolar geometry,

thus allowing the frame offset and frame rate ratio to be recovered for all pairs of

sequences.

Whereas the aforementioned works used features visible in both sequences, an-

other series of methods were developed for synchronize sequences recorded by two

jointly moving cameras, where the cameras’ fields of view did not overlap and the

camera centres were almost coincidental. Caspi and Irani [2] showed that synchro-

nization can be achieved if the inter-frame transformations within a sequence can

be recovered. Since the cameras were jointly moving, similar transformations oc-

curred in both sequences at the same instant in time. Their algorithm was based on

the vectors of eigenvalues of similar transformation matrices differing only in scale.

Alternative measures of transformation similarity were proposed by Spencer and

Shah [38]. Later, Korah and Rasmussen [17] extended Caspi and Irani’s algorithm

to synchronize N sequences, for N ≥ 2. They proposed a method to simultaneously

recover the homographies relating each camera to a reference camera.

An alternative geometric approach by Zhou and Tao [54] used the projectively

invariant cross-ratio [13] as a tool in recovering the temporal offset of two sequences.

They determined an object’s location in two frames of each sequence, and assumed

that it was moving with a constant velocity. Then in one view, the epipolar lines

for the object’s location in the two frames in the other view were computed and the

intersection points of these epipolar lines with the object’s linear trajectory were

determined. The cross ratio was then computed from these four collinear points,

and the temporal offset recovered from the cross-ratio.

Some algorithms use an algebraic measure of synchronization rather than a ge-

ometric reprojection error. The factorization method of Tomasi and Kanade [40]

showed that in the case of orthographic projection, a measurement matrix con-

structed from the image locations of feature points on a rigid object tracked through

a number of frames has rank 3. Later, Costeira and Kanade [6] extended the factor-

ization method to allow for independently moving objects. Wolf and Zomet [51,52]

used this approach to synchronize two sequences captured at the same frame rate.
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A set of points were tracked throughout each sequence but trajectory correspon-

dences between sequences were not determined; a measurement matrix was then

constructed from these point trajectories. Wolf and Zomet proposed two measures

of synchronization. One measure was based on the principal angles of subspaces

spanned by the columns of matrices constructed from point trajectories, where the

differences in the principal angles were to be minimized. The other measure was

a rank-based constraint, where a number of singular values of the measurement

matrix were expected to be zero due to the factorization rank constraint. These

singular values may be non-zero due to noise, or if measurements were taken from

frames captured at different instants in time. The sum of the singular values be-

yond the expected rank bound of the measurement matrix was used as a measure of

synchronization, and the frame offset could be recovered. Tresadern and Reid [42]

used a similar rank-based method in synchronizing to sub-frame accuracy sequences

recorded by affine cameras; they also solved for an unknown ratio of frame rates.

However, their algorithm varied in that it required a number of trajectory corre-

spondences from each sequence to be known.

Rao et al. [31] developed an alternative rank-constraint based approach that

synchronized sequences recorded by perspective cameras. In their algorithm, they

solved for a non-linear temporal relationship between two video sequences, for exam-

ple, two dancers performing the same routine at the same location, but at different

and non-constant tempos. The idea of applying the synchronization problem to

biological motions was earlier proposed by Giese and Poggio [10]. Rao’s algorithm

synchronized two video sequences from a single trajectory, with a set of matched

background points from each sequence used to initialize the algorithm. Whereas

Wolf and Zomet used the affine measurement matrix, Rao et al. used the n × 9

measurement matrix used in the linear estimation of the fundamental matrix, where

n ≥ 8 is the number of corresponding points from each view. In the synchronized,

noise-free case, this matrix should be of rank 8; the smallest singular value (the 9th)

was used as a measure of departure from synchronization. Rao et al. used a coarse-

to-fine approach, at each level determining pairs of corresponding frames from each

sequence via a dynamic programming method known as dynamic time warping.
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Previously, dynamic time warping has been used for speech recognition [33], which

is essentially attempting to synchronize a 1D signal. Tresadern and Reid [41] also

used the 9th singular value of this projective measurement matrix as a basis for a

measure for synchronization in the case of perspective cameras.

A different trajectory-based approach to recovering the frame offset of sequences

was outlined by Kuthirummal et al. [19]. Their algorithm required knowledge of

the trifocal tensor relating three stationary cameras with fixed intrinsic parameters.

It was assumed that the frame rates of all sequences were equal and that the frame

offset of the first two sequences was known. Thus, only the frame offset of the third

sequence relative to the first two was unknown. An object was tracked through

each sequence and the trajectory data from the first two synchronized sequences

was transferred to the third via the trifocal tensor. By taking the Fourier transform

of this transferred trajectory and the actual observed trajectory in the third view,

the unknown frame offset was recovered via the time shift property of the Fourier

transform.

An alternative feature used for synchronization is the frontier point, a point on

a curved surface where the tangent plane at the frontier point coincides with the

epipolar plane [5]. Frontier points in silhouette images project to the boundary

of the silhouette. Sinha and Pollefeys [35, 36] used frontier points to synchronize

sequences of object silhouettes recorded by cameras operating at the same frame

rate. A RANSAC-based approach firstly proposed a temporal offset and randomly

selected lines tangential to the silhouette’s convex hull. These lines were proposed as

potential epipolar lines and their point of intersection was proposed as the epipole.

Frontier points from other frames of the sequences were used to verify the proposed

spatial and temporal models.

Yan and Pollefeys [53] described a synchronization algorithm based on the dis-

tribution of space-time interest points [22]. These features are often detected when

objects collide or change directions. A number of significant space-time interest

points were detected in each sequence, and for each sequence, a histogram was

computed describing the temporal distribution of interest points throughout the

sequence. Then, the histograms were cross-correlated over the range of possible
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temporal offsets. The actual temporal offset was proposed to have occurred at the

frame offset with the maximum correlation score.

2.2.2 Direct alignment algorithms

Direct alignment [3] uses pixel intensities in a video frame for synchronization and

is suitable for videos containing significant lighting changes, e.g., fireworks, or flick-

ering fire. A direct alignment algorithm by Caspi and Irani [3] synchronized two

sequences in a coarse-to-fine manner. Firstly, a Gaussian sequence pyramid was

computed, which is the video sequence equivalent of a Gaussian image pyramid.

At each level of the pyramid, an iterative algorithm minimized the sum-of-squared

differences in pixel intensities between sequences according to the current estimate

of the spatio-temporal model.

Another intensity-based algorithm was proposed by Wolf and Zomet [52] who

divided two sequences into a number of short sub-sequences. A matrix was con-

structed to record synchronization scores for matching each sub-sequence from one

sequence to each sub-sequence from the other. The score was a rank-based measure

computed from a matrix constructed from intensity gradients in the spatial and

temporal dimensions. In the matrix of synchronization scores, correctly matched

sub-sequences were located along a straight line; from the gradient of this line, the

ratio of frame rates of the sequences was recovered, and the offset of the line from

the origin represented the frame offset.

Shechtman and Irani [34] described a template-matching method for locating a

template sequence (a video sequence with small spatial dimensions and consisting of

few frames) within a much larger sequence. Although this was not a synchronization

algorithm, it used the concept of correlating two video sequences. Ushizaki et

al. [45] recovered the frame offset of two sequences by firstly computing regions of

each frame containing intensity variations. Then for each sequence, a 1D signal was

computed that described the pixel intensity of the region over time. The signals

representing the two sequences were cross-correlated over a range of frame offsets;

the normalized cross-correlation score reached a peak at the correct frame offset.
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Ukrainitz and Irani [44] used a correlation-based approach to synchronizing se-

quences related by an affine spatial transformation. A Gaussian sequence pyramid

was computed and an iterative algorithm used to recover the spatial and temporal

parameters by maximizing a similarity measure. The similarity measure used in

this algorithm was based on the normalized correlation score between pixel intensi-

ties within a pair of space-time patches, one patch from each sequence. Within one

sequence, a patch was proposed around each pixel, and the corresponding patch

from the other sequence computed from the estimate of the spatio-temporal model.

An alternative direct alignment algorithm was presented by Dai et al. [7, 8]

who demonstrated that phase correlation, used to recover the spatial translation

between two images, can be extended to 3D to also recover the frame offset of two

video sequences. Since phase correlation is not robust to changes in viewpoint, their

iterative algorithm assumed that the scene was planar and recovered a homography

relating the two views. At each iteration, the algorithm refined the estimate of the

homography, then applied the homography to one sequence and recomputed the

frame offset via the 3D phase correlation method.

2.3 The algorithms presented in this thesis

In this section, my algorithms are introduced and I compare and contrast them

with the relevant literature presented in the previous sections.

Chapter 3 describes an algorithm that synchronizes two long video sequences

where a single object is tracked throughout each sequence. It uses a coarse-to-fine

approach where at the coarse level, an estimate of the ratio of frame rates and

bounds on the frame offset are proposed and at the fine level, an algebraic measure

of synchronization is used to search for the synchronization parameters. This is

the same measure as used by Rao et al. [31] However, my algorithm and Rao’s

algorithm vary in that my algorithm assumes that the frame rate of each camera is

constant but Rao’s algorithm can recover a non-linear temporal relationship (i.e.,

Rao et al. treat α in Equation (1) as a function of time whereas I treat it as a

constant). Hence, Rao’s algorithm is able to synchronize sequences of the same
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actions performed by different people, however it requires weak camera calibration

and the motions must be performed at the same location. My algorithm does not

require camera calibration but it does require the recorded videos to contain the

same motion.

The algorithm that I describe in Chapter 3 also shares some similarities with

Tresadern and Reid’s algorithm [42] in that the frame rate ratio and frame offset

can be recovered from object trajectories alone, using a rank-based approach to

synchronization. Their algorithm assumed an affine camera model and required

multiple object trajectories to be computed and matched between sequences. A

later algorithm by Tresadern and Reid [41] synchronized sequences recorded by

perspective cameras, however it operated by computing a cost function for every

pairing of frames and again required multiple points (in this case 8 or more) to

be tracked throughout each sequence, though not all points were required to be

in motion. Due to the coarse-to-fine approach employed by my algorithm, it is

expected that the cost function will be computed fewer times compared to Tresadern

and Reid’s algorithm.

Chapter 4 describes an algorithm in which the known epipolar geometry and

projectile motion are exploited such that pairs of corresponding frames from a

pair of video sequences are recovered rapidly in a novel iterative manner. From

multiple such frame correspondences, the algorithm is shown to recover the frame

rate ratio of the two sequences, and the frame offset is recovered to sub-frame

accuracy. This work is similar to the algorithm by Carceroni et al. [1] in that

the known epipolar geometry is used to compute frame correspondences based on

where an object crosses an epipolar line. Whereas Carceroni et al. used frame-

to-frame object motion and did not attempt to track objects throughout entire

sequences, my algorithm takes the trajectory of an object as tracked through two

video sequences and exploits frame-to-frame motion relative to an epipolar line

to rapidly converge to the correct synchronization. Unlike the method presented

in Chapter 3 which integrates tracking data from all frames to synchronize the

sequences as a whole, this algorithm recovers the synchronization by locating pairs

of temporally corresponding frames in each sequence.



18 CHAPTER 2. LITERATURE REVIEW

In Chapter 5, a synchronization algorithm based on the matching of space-time

interest points is detailed; unlike the algorithms in Chapters 3 and 4, no object

tracking is required. I review space-time interest points [22] in Section 5.2; they

are considered to be the equivalent in video sequences of spatial interest points

in still images. My algorithm describes a nested RANSAC-based framework for

using putatively matching space-time interest points to recover the synchronization

parameters and a spatial model (either a homography or a fundamental matrix)

relating the two cameras. I also present a special case of the algorithm that recovers

the synchronization parameters when the spatial model is known. My approach

demonstrates that the synchronization problem can be considered as an extension

to the common stereo matching problem. Yan and Pollefeys’ previous work on

synchronization using space-time interest points involved correlating the temporal

distribution of space-time interest points from each sequence [53]. Whilst their

algorithm is fast and simple, it does not attempt to find corresponding space-time

interest points from each sequence.

In Table 1, the algorithms reviewed in this chapter and my algorithms outlined

in this section are categorized based on their requirement for knowledge of a spatial

relationship between the two sequences and whether the sequences are capable of

recovering the frame rate ratio of two sequences.

2.4 Summary

In this chapter, a review of the relevant literature for synchronization has been

presented. It has been shown that there is a wide variety of algorithms in their

approaches to the synchronization problem and in the assumptions that are made.

The material to be presented in the following chapters has been put into context

with the relevant literature and each algorithm is shown to be unique in various

aspects.
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Cameras Spatial r’ship Recovers α? Algorithms

Kuthirummal et al. [19]
No Reid and Zisserman [32]

Zhou and Tao [54]
Known Pooley et al. [30]

Rao et al. [31]
Yes Tuytelaars and Van Gool [43]

Velipasalar and Wolf [46]
Chapter 4

Caspi and Irani [3, 4]
Caspi and Irani [2]

Caspi and Irani [3] (direct method)
Dai et al. [7, 8]

2 Lee et al. [24]
Noguchi and Kato [28]

No Nunziati et al. [29]
Unknown Sinha and Pollefeys [35, 36]

Stein [39]
Ushizaki et al. [45]

Wolf and Zomet [51,52]
Yan and Pollefeys [53]

Tresadern and Reid [41,42]
Ukrainitz and Irani [44]

Yes Wolf and Zomet [52] (direct method)
Chapter 3
Chapter 5

3 Unknown No Lei and Yang [25]
Known Yes Whitehead et al. [50]

N Carceroni et al. [1]
Unknown No Korah and Rasmussen [17]

Lei and Yang [25]

Table 1: The reviewed algorithms are classified based on the number of video
sequences that they can synchronize, whether the algorithms require the cameras’
spatial relationship to be known prior to commencing the synchronization step (e.g.,
a homography or a fundamental matrix), and whether the algorithms can recover
the frame rate ratio. Some papers describe both feature-based and direct alignment
methods; the direct alignment method is listed separately in the table and identified.
Algorithms that are presented in this thesis are denoted in bold.
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Chapter 3

Synchronization from a single

trajectory

3.1 Introduction

This chapter introduces an algorithm that synchronizes two video sequences from

the imaged trajectories of a single object tracked throughout each sequence. In

many video sequences, a dominant moving object is visible and can be tracked in

most frames, e.g., a person walking or dancing (in which case, the person’s head,

hands, or feet may be tracked), or a ball being thrown or kicked in a sporting

event. Sometimes, particularly in the latter example, the cameras capturing this

motion may be widely separated, in which case there may be few or no common

stationary background points available for camera calibration. Existing trajectory

based synchronization algorithms require either stationary background points [31]

or multiple trajectories [42] to achieve synchronization, though it is not always

necessary to determine corresponding trajectories from each sequence [51].

The algorithm presented in this chapter recovers the frame rate ratio, α, and

the frame offset, ∆, of two sequences where the trajectory of a single object moving

with a significant vertical motion component, e.g., a series of ballistic trajectories,

is known. The trajectory need not be continuous throughout the sequences, and

no stationary background points are required for synchronization. My algorithm is

shown to synchronize sequences where tracking data may be missing in a significant

21
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number of frames. It is assumed that the two cameras recording the sequences are

stationary and have fixed intrinsic parameters; it is also assumed that both cameras

have similar vertical orientations.

The algorithm uses a coarse-to-fine approach. At the coarse level, each video

sequence is divided into a number of sub-sequences, where a sub-sequence can be

considered to be a trajectory segment consisting of the object moving upwards and

then downwards, for example, a ballistic trajectory. A vertical motion constraint is

used to propose pairs of matching sub-sequences, one from each video sequence. In

this process, an initial estimate of the frame rate ratio is recovered. This estimate

is then used to determine a range of frame offsets in which the actual frame offset is

assumed to lie. The fine synchronization step involves processing the sequences at

the (sub-)frame level, using a measure of synchronization derived from a measure-

ment matrix constructed from image observations. Estimates of both α and ∆ are

refined using a simplex search method, the cost function of which is based on this

measure of synchronization. The algorithm is coarse-to-fine in the sense that data

are processed firstly at a coarse scale using one method, and a second method is

used for processing at a finer scale, rather than repeating the same operation over

a number of scales.

This algorithm is similar to the approaches of Rao et al. [31] and Tresadern and

Reid [41,42] in that it uses the smallest singular value of a measurement matrix as

a measure of synchronization; however, there are some significant differences. Rao

et al. solve for a nonlinear temporal relationship between sequences, whereas this

algorithm solves for the linear relationship described in Equation (1). However, un-

like Rao et al., my algorithm requires neither stationary background points nor the

initial frame offset to be known for synchronization. Tresadern and Reid’s algorithm

does not require stationary background points; however, it requires multiple objects

to be tracked throughout both sequences and corresponding trajectories from each

sequence to be determined in order to recover both α and ∆. In comparison, my

algorithm requires only one object to be tracked.
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My algorithm also bears similarities to an algorithm by Caspi and Irani [3,4]. Al-

though their algorithm is designed to recover the frame offset and either a homogra-

phy or fundamental matrix from multiple hypothesised trajectory correspondences,

in the simplest case, only one object must be tracked throughout each sequence,

which is the case in this algorithm. The algorithms differ in that Caspi and Irani’s

algorithm explicitly estimates a fundamental matrix from a measurement matrix,

from which they compute a measure of synchronization; my algorithm computes

only the singular values of the same measurement matrix which is computation-

ally cheaper; this is discussed in detail in Section 3.5.2. Further, Caspi and Irani

use an iterative approach to recover the synchronization for which the results may

be dependent on the initial state of the algorithm, whereas my algorithm uses a

coarse-to-fine approach which is less likely to get stuck in a local minimum.

In this chapter, the proposed algorithm is introduced and results presented for

synchronizing synthetic data sets and real video sequences. It is shown that the

algorithm is successful in synchronizing uncalibrated video sequences which capture

the trajectory of a single object with significant vertical motion.

3.2 Coarse synchronization

At the coarse level, each sequence is divided into a number of sub-sequences. An

assumption is made such that upper and lower bounds of α are proposed from the

lengths of the sub-sequences. Then, the direction of the object’s vertical motion

in each frame is used to establish tentative matching sub-sequences from each se-

quence, yielding an initial estimate of α. Finally, for this initial estimate of α, a

range of ∆ values are proposed that are used in the following fine synchronization

step.

3.2.1 Sub-sequence labelling

A single moving object is tracked throughout two video sequences denoted by S and

S ′. Sequence S is divided into N sub-sequences, denoted s1, . . . , sN , and S ′ into N ′

sub-sequences s′1, . . . , s
′
N ′ , where successive sub-sequences are separated by missing
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Figure 3: An example showing the labelled sub-sequences within two unsynchro-
nized video sequences, where α = 1 and each sub-sequence consists of the imaged
trajectory of an object undergoing successive ballistic motions. It can be seen that
if sub-sequence s1 is aligned with sub-sequence s′2, synchronization is achieved as
demonstrated in Figure 4. Note that sub-sequence s′4 has no corresponding sub-
sequence in S; this may be due to occlusion or a tracking failure.

trajectory data (due to occlusion or the tracked object leaving the field of view),

or where the object bounces, i.e., where the direction of vertical motion changes

from downwards to upwards. A bounce is a useful event to separate sub-sequences

because its temporal location in each sequence is independent of perspective. In

sports videos, a sub-sequence can be considered to contain a ball undergoing succes-

sive ballistic motions. More generally, a sub-sequence is a contiguous set of frames

where the object firstly moves upwards and then moves downwards, and is visible

in all such frames. Figure 3 shows an example of labelling sub-sequences within a

pair of video sequences.

3.2.2 Temporal overlap assumption

It is expected that a pair of sub-sequences, sn from S and s′m from S ′, containing

images of the same 3D motion, will be recorded over a similar length of time; note

that this does not mean that they will have a similar number of frames since each

sequence may be recorded at a different frame rate.

Sometimes, the time taken by one camera to record one sub-sequence may be

significantly different to the time taken to record the sub-sequence containing the

same 3D motion in the other video sequence, as, due to occlusion, one sub-sequence

may be much shorter than the other sequence. It is assumed that the period of time

taken to record sn is no more than double the period of time taken to record s′m, and

vice versa; I refer to this as the temporal overlap assumption. For example, if sn was
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recorded in 4 seconds, then it is assumed that the corresponding sub-sequence s′m

was recorded in the range of 2 to 8 seconds. From this constraint and the number

of frames in each sub-sequence, a range of frame rate ratios can be proposed in

which the actual value of α is assumed to lie. It should be emphasized that this

assumption does not mean that α is assumed to lie in the interval [1/2, 2].

3.2.3 Determining the upper and lower bounds of α

The upper and lower bounds of α for each pair of sub-sequences are computed from

the number of frames in the sub-sequences. Consider two sub-sequences sn and s′m

having ln and l′m frames respectively. Then via the temporal overlap assumption,

it is assumed that:

α ∈
[

ln
2l′m

,
2ln
l′m

]
. (2)

Any frame rate ratio in this interval will satisfy the temporal overlap assumption

for the pair of sub-sequences sn and s′m.

As an example, if ln = 30 and l′m = 50, then by Equation (2), α ∈ [3/10, 6/5].

Consider the lower bound where α = 3/10; in the time taken for 30 frames in sn to

be recorded, 100 frames will be recorded in S ′. Now due to the temporal overlap

assumption, s′m must be recorded in one half to twice the time period that was

taken to record sn, i.e., if sn was recorded in 1 second, the time taken to record s′m

must be between 0.5 second to 2 seconds. From this constraint, s′m must contain

between 50 and 200 frames. It can be seen that the constraint holds, as s′m contains

50 frames. At the upper bound, where α = 6/5, there will be 25 frames recorded

in S ′ in the time that the 30 frames of sn are recorded. According to the temporal

overlap assumption, the length of s′m must be 12.5 to 50 frames, which again is

true. For α ∈ (3/10, 6/5), the lower bound of the length of s′m will increase from

12.5 to 50 frames, and the upper bound will increase from 50 to 200 frames. As l′m

will always lie in this interval, the bounds on α have been correctly calculated to

satisfy the temporal overlap assumption.

For the sequences S and S ′, the upper and lower bounds of α are computed for

all sub-sequence pairs. Then, from the set of the lower bounds of α, the median
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lower bound value is determined and denoted by αlb. Similarly, the median of the

set of upper bound values is calculated and denoted by αub. The actual frame rate

ratio is proposed to lie within the interval [αlb, αub].

3.2.4 A vertical velocity-based measure of matching sub-

sequences

Vertical velocity is used to calculate a basic measure of how well two video sequences

match at a given frame rate ratio. For a proposed pair of sub-sequences sn and s′m

recorded at a frame rate ratio α̃ ∈ [αlb, αub], this measure describes how well the

two sequences match if sn and s′m are images of the same 3D trajectory. The score

incorporates the direction of the vertical velocity of the tracked ball, and also the

number of other sub-sequences that are aligned if sn and s′m are aligned.

Vertical motion assumption

Clearly, the imaged trajectory of the ball in each view depends on the orientation

of the cameras. As vertical velocity is used as the basis of the coarse measure

of synchronization that is to be introduced, it is therefore important that both

cameras’ vertical orientations are similar. In this algorithm, it is not assumed that

the cameras’ vertical orientations are exactly the same; however, it is reasonable

to assume that if both cameras are mounted, that the vertical axis of each image

plane would be similar to the vertical direction in the real world.

Later, the validity of this assumption is tested in Section 3.4 where the imaged

trajectories of an object are rotated to simulate rotating the vertical axis of the

cameras.

Determining supporting sub-sequences

Consider a pair of sub-sequences, sn and s′m, that contain images of the same 3D

trajectory. A temporal offset is applied to one sequence such that the first frames

of sn and s′m are assumed to be recorded at the same time; these sub-sequences are

now considered to be aligned. Aligning sn and s′m causes other sub-sequences in
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Figure 4: A temporal offset has been applied to the sequences shown in Figure 3
such that s1 and s′2 are now aligned. In this example, it is known that α = 1.

S and S ′ to be aligned. Let sq and s′p be a pair of sub-sequences from S and S ′

respectively that are aligned as a result of aligning sn and s′m. If the directions of

the vertical velocity components in sq and s′p match in any frame then (sq, s
′
p) is a

supporting sub-sequence pair for sn and s′m.

Let the number of supporting sub-sequence pairs for sn and s′m be denoted by

Pn,m. Now, consider Figure 4, which is modified from Figure 3 by deleting sub-

sequence s′1 and shifting S ′ to the left. Here, it can be seen that when s1 and s′2

are aligned, the directions of the vertical motions are aligned in the pair of sub-

sequences s2 and s′3, denoted (s2, s
′
3), and also in the sub-sequence pairs (s3, s

′
5),

(s4, s
′
6), and so on. Thus, there are 3 supporting sub-sequence pairs for s1 and s′2

and so in this example, P1,2 = 3.

Computing an alignment matrix

An alignment matrix Aα̃ encapsulates the relationship between all pairs of sub-

sequences at a given frame rate ratio α̃ ∈ [αlb, αub], based on vertical velocity

components. For a pair of sub-sequences, sn and s′m, an alignment score is computed

that measures the matching vertical motions in the proposed corresponding frames

of the two sequences. This score is stored in element (n, m) of Aα̃, denoted by Aα̃
n,m.

If sn and s′m are images of the same 3D trajectory then the vertical motions will

correspond and the alignment score is expected to be high; otherwise, it is likely

that the alignment score will be low. The alignment score is computed as follows:

1. If α̃ 6= 1, it is necessary to interpolate trajectory data in one sequence such

that the time period between consecutive frames in each sequence is the same,
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therefore corresponding observations are considered to have been made at the

same instant in time. It is assumed that the frame rate is sufficiently high

that it is reasonable to use linear interpolation.

2. The sub-sequences sn and s′m are aligned by proposing that the first frames

of sn and s′m were recorded at the same time. Let S̃n,m and S̃ ′n,m denote the

sequences with the temporal offset applied as a result of aligning sn and s′m.

3. Corresponding frames from S̃n,m and S̃ ′n,m are deleted where trajectory in-

formation is not available in both sequences due to tracking failures or the

sequences starting and finishing at different times. These frames are not use-

ful because no data comparison can be made between sequences. Sequences

S̃n,m and S̃ ′n,m now contain the same number of frames, denoted by f̃n,m.

4. The alignment score is computed from the object’s direction of vertical motion

in corresponding frames of S̃n,m and S̃ ′n,m. The vertical velocity is determined

from consecutive frames in each sequence. Let vk and v′k be, respectively,

the object’s vertical velocity components in frame k of both S̃n,m and S̃ ′n,m.

Due to the interpolation process given in Step 1, both frames are proposed

to have been recorded at the same instant in time. The alignment score for

sub-sequences sn from S and s′m from S ′ at the frame rate ratio α̃ is denoted

by Aα̃
n,m and computed via:

Aα̃
n,m =

Pn,m

f̃n,m

f̃n,m∑
k=1

δ(sgn(vk)− sgn(v′k)), (3)

where Pn,m is the number of supporting sub-sequence pairs for sn and s′m,

sgn(vk) is the sign of vk, and

δ(x) =

1, if x = 0

0, otherwise.

Informally, the quantity expressed in Equation (3) is the percentage of frames

in S̃n,m and S̃ ′n,m where the object’s imaged vertical motions in the proposed

corresponding frames are in the same direction, multiplied by the number of
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supporting sub-sequences, Pn,m. Although it may appear to be sufficient to

use the percentage of frames with corresponding vertical motion and hence

unnecessary to multiply the percentage by Pn,m, high alignment scores are

sometimes found for pairs of sub-sequences only a few frames in length located

near the ends of sequences (e.g., by aligning s5 and s′2 in Figure 4); such sub-

sequence pairs often have few supporting sub-sequence pairs. Multiplying by

Pn,m ensures that a higher alignment score is assigned to correctly aligned sub-

sequence pairs that have a high percentage of frames with matching directions

of vertical motion.

3.2.5 Finding an initial estimate of α

The alignment matrix Aα̃ contains alignment scores for only one frame rate ratio α̃.

To determine an initial estimate of α, a number of alignment matrices must be com-

puted for a range of frame rate ratios. Previously, the lower and upper bounds, αlb

and αub respectively, were proposed via the temporal overlap assumption. For each

frame rate ratio α̃ ∈ [αlb, αlb + 0.05, . . . , αub], an alignment matrix Aα̃ is computed.

Separating successive values of α̃ by 0.05 has shown empirically to provide a good

compromise between computational efficiency and finding a good initial estimate of

α for use in a later step.

For each alignment matrix, the proposed corresponding sub-sequence pairs are

computed. A proposed corresponding sub-sequence pair is an element of the align-

ment matrix that contains the maximum value of both the row and the column that

it is in; intuitively, this means that it is highly likely that this pair of sub-sequences

correspond to the same trajectory segment in 3D space. The sub-sequence numbers

of successive proposed corresponding sub-sequence pairs should increase monoton-

ically, though not necessarily at the same rate since some sub-sequences may be

missing in either one or both sequences. However, the previously described process

of determining proposed corresponding sub-sequence pairs does not take this into

account. The following method is used to remove sub-sequence pairs that do not

satisfy this monotonicity constraint.

A linear relationship exists between the frame indices of frames recorded at the
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Figure 5: An example of alignment matrices, Aα̃, shown graphically for a number of
frame rate ratios α̃. The pixel intensity is proportional to the value of the matrix
element and all of the images use the same intensity scale.

same instant in time, as described mathematically in Equation (1). If, for every

proposed corresponding sub-sequence pair, a 2D point is constructed from the frame

numbers of the first frames of each of the proposed corresponding sub-sequences,

then it is expected that a straight line can be fitted to these points. The 2D points

representing incorrectly proposed corresponding sub-sequence pairs will not lie on

this straight line; such incorrectly proposed sub-sequence pairs are determined via

RANSAC [9] and deleted.

Figure 5 shows alignment matrices computed for synthetic sequences for a num-

ber of frame rate ratios. The synthetic sequences contained ten sub-sequences, and

the actual frame rate ratio was 1.00. A dominant diagonal line of proposed corre-

sponding sub-sequence pairs is visible in Figures 5(b), (c), and (d); it is seen that

the brightness of this line in Figure 5(c), corresponding to the correct frame rate

ratio, is much greater than in either of Figures 5(b) or (d). It is noted that the

gradient of this line is not related to the sequences’ frame rate ratio since it arises

from sub-sequence correspondences rather than frame correspondences.
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Figure 6: The median alignment score of the proposed corresponding sub-sequence
pairs is shown over a range of frame rate ratios. It can be seen that the median
alignment score reaches a maximum at the actual frame rate ratio, α = 1.

Each proposed corresponding sub-sequence pair has an alignment score. At each

value of α̃, the median alignment score of the proposed corresponding sub-sequence

pairs from the alignment matrix Aα̃ is computed. Let this median score be denoted

by aα̃. Then the initial estimate of α, denoted by α0, is determined via:

α0 = argmax
α̃

aα̃.

Figure 6 shows the median alignment score of proposed corresponding sub-

sequence pairs over a number of frame rate ratios for a synthetic data set containing

ten sub-sequences. At the actual frame rate ratio, a maximum of the median score

is clearly visible.

3.2.6 Finding an initial range of ∆ values

Given α0, the next step is to propose an estimate of the frame offset for that frame

rate ratio. A voting scheme is used to determine a range of frame offsets that

bracket the best frame offsets for α0, based on the assumption that corresponding

sub-sequences will overlap temporally.

Firstly, consider a pair of proposed corresponding sub-sequences sn and s′m.

Since an estimate of α0 is known, it is assumed that linear interpolation has been

performed on the trajectory data of one of the sequences such that sn and s′m

are considered to be recorded at the same frame rate and consist of ln and l′m

frames respectively. Then, there is a range of frame offsets for which this pair of
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Figure 7: The distribution of votes as determined by the voting scheme. In this
example, the each sequence contained ten sub-sequences, and α0 = 1. The actual
frame offset is at ∆ = 0, with ∆lb = −63 and ∆ub = 64.

sub-sequences will overlap temporally. The upper and lower bounds of this range,

denoted by ∆ub
n,m and ∆lb

n,m respectively, are given via:

∆ub
n,m = s1

n − s′1m − l′m

∆lb
n,m = s1

n − s′1m + l′n,

where s1
n and s′1m are the frame numbers of the first frames of sn and s′m in S

and S ′ respectively. Votes are cast for each of the integer temporal offsets in the

interval [∆lb
n,m, ∆ub

n,m]. This process is repeated for each proposed corresponding sub-

sequence pair. Finally, for each frame offset, the votes contributed by each pair of

corresponding sub-sequences are summed. An example of the resulting distribution

of votes is given in Figure 7.

Each temporal offset within the dominant peak of the vote distribution that has

at least half of the maximum number of votes becomes a candidate temporal offset

to be processed in the fine synchronization step. Let the upper bound of the set

of eligible votes be denoted by ∆ub, and the lower bound by ∆lb; it is proposed

that the actual offset ∆ lies in the interval [∆lb, ∆ub]. The size of this interval is

similar to the lengths of the sub-sequences, hence it is expected to be small relative

to the length of the sequences. This process significantly reduces the computation

required in the subsequent search for the temporal offset ∆.
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3.3 Fine synchronization

The fine synchronization step recovers the synchronization parameters, α and ∆,

from the initial estimate of the frame rate ratio, α0, and the interval [∆lb, ∆ub].

This is a two-step process: first, an estimate of ∆ is calculated for the frame rate

ratio α0; second, these values are used to initialize a search algorithm to accurately

refine the values of α and ∆.

3.3.1 Finding the initial frame offset

To propose an initial estimate of the frame offset, firstly consider the votes cor-

responding to the initial estimate of the frame rate ratio, α0. For each candidate

integer frame offset ∆̃ ∈ {∆lb, ∆lb + 1, . . . , ∆ub}, a measure of synchronization is

computed. This measure is derived from two-view epipolar geometry.

Typically, the set of corresponding points used to estimate the fundamental

matrix are stationary points visible in each of a pair of still images. In this syn-

chronization algorithm, a different approach is taken by using the observed spatial

locations of a single moving object that provides one point correspondence per pair

of temporally corresponding video frames. The linear algorithm used to estimate

the fundamental matrix involves constructing a measurement matrix M from 8 or

more pairs of corresponding points [13], or in this case, trajectory observations from

pairs of proposed temporally corresponding frames.

A measurement matrix is computed for a range of temporal offsets for the ini-

tial estimate of the frame rate ratio, α0. If α0 6= 1, trajectory information may

be required at non-integer frame numbers, hence the tracking data are linearly in-

terpolated to provide observations at these non-integer time intervals. The frame

offset ∆̃ is then applied to S and S ′, and frames where trajectory data are not

available in both sequences are deleted, as in the process described in Step 3 of

Section 3.2.4. Let S̃ and S̃ ′ denote these modified sequences, and f̃ the num-

ber of frames in each of these sequences. For each of the proposed integer tem-

poral offsets ∆̃ ∈ {∆lb, ∆lb + 1, . . . , ∆ub}, the measurement matrix Mα0,∆̃ is con-

structed from pairs of proposed temporally corresponding points xt = (xt, yt) and
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x′
tα0+∆̃

= (x′
tα0+∆̃

, y′
tα0+∆̃

), representing the object’s location in frame t of S̃ and

frame (tα0 + ∆̃) of S̃ ′ respectively, where t ∈ {t̃ | t̃, (t̃α0 + ∆̃) ∈ {1, 2, . . . , f̃}}.

Note that ∆̃ may be positive or negative. Let f ∈ R9 be the vector formed by the

elements of the fundamental matrix. Then, Mα0,∆̃ and f satisfy:

Mα0,∆̃f = 0, (4)

where

Mα0,∆̃ =


...

...
...

...
...

...
...

...
...

x′
tα0+∆̃

xt x′
tα0+∆̃

yt x′
tα0+∆̃

y′
tα0+∆̃

xt y′
tα0+∆̃

yt y′
tα0+∆̃

xt yt 1
...

...
...

...
...

...
...

...
...

 .

(5)

Each row of the matrix Mα0,∆̃ takes on a different value of t. In order for f to be

recoverable from Equation (4), it is necessary that Mα0,∆̃ has at least 8 independent

rows.

As suggested by Hartley [13], the trajectory coordinates are normalized to avoid

numerical instability before constructing the measurement matrix. Ideally, the ma-

trix Mα0,∆̃ is of rank 8. However, when Mα0,∆̃ contains more than 8 rows, it is usually

of rank 9 due to the image coordinates being perturbed by noise, or incorrect point

correspondences induced by unsynchronized sequences. Although vector f can be

estimated via the singular value decomposition of Mα0,∆̃, this is not necessary. In-

stead, the smallest, i.e., the 9th, singular value of Mα0,∆̃ is used as a measure of

synchronization; it is calculated for each temporal offset in the interval determined

by the voting scheme. The temporal offset with the minimum of the 9th singular

value is deemed to be the frame offset recovered to integer accuracy. The 9th sin-

gular value of Mα0,∆̃ was previously used as a measure of synchronization by Rao et

al. [31]. In Section 3.5.2, I discuss the advantages of using the 9th singular value

for the measure of synchronization instead of the reprojection error.

Once the value of ∆̃ (corresponding to the frame rate ratio α0) with the min-

imum of the 9th singular value has been located to integer accuracy, it can be

refined to sub-frame accuracy via the golden-section search (implemented using

the MATLAB function fminbnd). Again, the 9th singular value of Mα0,∆̃ given in
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Equation (5) is used as a measure of synchronization and the object’s trajectory

is linearly interpolated where necessary. The search interval is two frames wide,

with one frame on each side of the frame offset corresponding to the local minimum

previously found. Now, let ∆0 denote the sub-frame offset with the minimum of the

9th singular value. As this sub-frame temporal offset lies in a narrow interval and

the curve’s profile is convex, convergence is guaranteed. In practice, to reduce the

width of the search window to within 0.05 frame, approximately seven iterations of

the golden section search are required.

3.3.2 Searching for the actual synchronization

To further refine the synchronization parameters, Nelder-Mead simplex search is

used (implemented via the MATLAB function fminsearch). The search is initial-

ized using the values α0 and ∆0 computed above, and as before, the measure of

synchronization used is the 9th singular value of the measurement matrix M.

In Figure 8(a), the variation of the 9th singular value over a region of ∆-α space

is displayed. If the data were plotted in 3D, a short valley running along a straight

line through the location of the actual synchronization would be visible, which in

this example is at α = 1 and ∆ = 40; the line plotted in Figure 8(a) indicates

the bottom of this valley, and the asterisk indicates the global minimum within the

valley. The 9th singular values at points along this line are displayed in Figure 8(b).

It can be seen that as in Figure 15, a sharp minimum of the 9th singular value is

observed at the actual synchronization. An explanation for the existence of this

valley is presented in Section 3.5.1.

In the previous step, the bottom of the valley was located for the initial estimate

of α0. The aim now is to search for the minimum of the 9th singular value within

the valley. Since the previous search step using a bounded one dimensional search

located a point within the valley, the search region of this secondary search will

remain inside the valley, as otherwise the value of the cost function will increase.
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Figure 8: (a) The 9th singular value of the measurement matrix calculated at
various values of ∆ and α. The pixel intensity is proportional to the magnitude of
the 9th singular value. For each discretized α value, the ∆ value with the smallest
9th singular value is located; a line is overlaid that passes through these (∆, α)
points. The actual 9th singular values along this line are plotted in (b).

3.4 Results

In this section, results are presented for synchronizing a number of synthetic and real

video sequences. The synthetic sequences consisted of a set of parabolic trajectories

generated in 3D space and projected onto two image planes representing virtual

cameras; each sub-sequence in the virtual video sequences corresponded to one

parabolic trajectory. Each parabolic trajectory was of a randomly generated length

up to 100 frames, and the number of frames between successive trajectories was

also randomly generated, again up to 100 frames. For the real video sequences, two

different camera setups were used. In the real video sequences denoted indoor and

outdoor in Table 2, both cameras recorded at 25fps with each frame containing

two independently recorded half-height interlaced fields; the size of each half-height

image was 720 × 288 pixels. For the other real video sequences, the resolution of

each camera was 640× 480 pixels, with one camera always recording at 15fps, and

the other camera recording at either 15fps or 30fps. The ratio of frame rates for

each pair of sequences is shown in Table 2.

In the real video sequences, an object was moving with significant vertical mo-

tion. In the sequences with names beginning with dark, a point light source was
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tracked. The light source was held in one hand as the subject holding the light

walked with normal arm motions around an irregular path in a dark room (in the

darkwalk sequence pair), or manually moved the light along a path similar to a

ballistic trajectory. In these sequences, the light source was tracked automatically

by locating the centroid of the light in each frame. The other real video sequences

contained a ball being thrown and bounced, or the ball being held in the hand of a

person walking normally. The ball was manually tracked throughout the sequence

by estimating its centroid in each frame. Trajectory data was unavailable in a sig-

nificant number of frames due to occlusion or the ball or light source moving outside

the camera’s field of view.

Table 2 summarizes the results of synchronizing a number of real and synthetic

video sequences. For synthetic data sets, the number of sub-sequences present

in each sequence is given in the data set’s name, e.g., fifteen-a. The actual

frame rate ratio and frame offset for each pair of sequences are given by α and ∆

respectively; the estimated frame rate ratio and frame offset are denoted by α̂ and

∆̂ respectively. Two values of ∆̂ are given: one is for the case when both ∆ and

α are unknown, and the other is for when α is known. In the latter case, α0 was

set to the known value of α, and the recovered frame offset ∆̂ is the value of ∆0 as

recovered in Section 3.3.1 (i.e., ∆0 is estimated via the 1D golden section search,

but not refined using the 2D Nelder-Mead method). In the case where α 6= 1, the

trajectory data from one sequence was sub-sampled.

Figures 9, 10 and 11 show synchronized frames from the backyardb, indoor

and walk6 sequences respectively. In each of the frames shown in the figures, the

tracked object’s trajectory throughout the time interval of the displayed frames is

overlaid. This is only a small segment of the trajectory used for synchronization.

In the four data sets darkrooma, darkroomb, darklaba, and darklabb, a light was

tracked throughout each sequence. Frames where the light turned on and off were

used as cues for recovering the ground truth synchronization parameters, hence ∆

is only available to integer accuracy. The light was not occluded and rarely moved

outside of either camera’s field of view. In Figure 12, the entire trajectories of the

light in each view of the darkwalk sequences are shown.
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Data set S S ′ α α̂ ∆ ∆̂ ∆̂
name length length α unknown α known

ten-a 958 958 1 1.0000 0.0 0.00 0.00
ten-b 958 506 4/3 1.3334 200.0 199.99 200.01

fifteen-a 1715 1158 2 2.0000 −599.5 −599.51 −599.51
fifteen-b 1715 1298 6/5 1.2000 500.5 500.51 500.50
fifteen-c 1715 616 5/6 0.8334 1200.5 1200.47 1200.50
darklaba 433 808 2 2.0002 −59.0 −58.88 −58.82
darklabb 408 747 2 2.0001 −70.0 −69.36 −69.42

darkrooma 308 882 2 2.0000 258.0 258.24 258.20
darkroomb 449 615 1 1.0001 93.0 92.85 92.87
backyarda 449 698 2 2.0000 −172.5 −172.25 −172.24
backyardb 449 932 1 1.0000 39.5 39.19 39.21

indoor 794 838 1 1.0000 8.0 8.50 8.48
outdoor 1536 888 1 1.0000 738.0 737.73 737.74
darkwalk 400 900 2 2.0004 −130.5 −130.57 −130.46

walk6 434 405 1 1.0001 −30.5 −30.46 −30.44
walk7 449 787 2 2.0000 −50.5 −50.44 −50.44

Table 2: Results of synchronizing a number of synthetic and real video sequences;
results for synchronizing synthetic data sets are presented in the top section of the
table, whilst results for real sequences are given in the bottom section. To compute
∆̂ where α is known, the value of ∆̂ is the value of ∆0 computed in Section 3.3.1.

The results show that α̂ is recovered very accurately, and ∆̂ is recovered to ac-

ceptable accuracy, remembering that ∆ is at best known to the nearest half-frame

for real video sequences. It can also be seen that if the algorithm recovers both

∆̂ and α̂, the parameter ∆̂ is computed to a similar accuracy to the case where

α̂ was known, demonstrating that the synchronization accuracy is not significantly

affected if the frame rate ratio is unknown. The results for synchronizing the syn-

thetically generated data sets where the frame offset is known exactly shows that

this algorithm can accurately recover the frame offset to sub-frame accuracy.

It was stated in Section 3.2.5 that potential values of α0 were separated by 0.05.

In Table 2, it can be seen that some synthetic data sets (ten-b and fifteen-c)

had frame rate ratios that were not a multiple of 0.05. This shows that even though

α0 is only an estimate, accurate recovery of α̂ can still be achieved.

In the indoor data set, there were 17 and 19 sub-sequences in S and S ′ re-

spectively; the alignment matrix is shown in Figure 10(c). In this experiment, the
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Figure 9: (a) & (b) Synchronized pairs of frames from sequence backyardb, with
a small segment of the ball’s trajectory overlaid. In this example, α = 1 and
∆ = −39.5 frames. The half-frame misalignment can be seen in these sequences
by examining the trajectory where the ball bounces. The alignment matrix for this
pair of sequences is shown in (c), where it can be seen that some sub-sequences
visible in Sequence 1 are not visible in Sequence 2, and vice versa. The proposed
corresponding sub-sequence pairs are indicated by asterisks in (c).

ball was frequently occluded by the people in the scene and the ball often moved

outside the cameras’ fields of view. Because of this, some sub-sequences in S did

not have a corresponding sub-sequence in S ′ and vice versa, yet synchronization

was still achieved. Also, the sequences had 847 pairs of corresponding frames after

synchronization, but of these frames, there were only 130 frames where the ball

was visible in both sequences. In the fifteen-b synthetic data set, even numbered

sub-sequences were deleted from one sequence. Even with this significant loss of

data, accurate synchronization was achieved as shown in Table 2.
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Figure 10: Frames taken from the indoor sequences, where α = 1 and ∆ = 8.5
frames. There are many occasions where the ball is occluded by the people in the
scene, and when the ball is outside the field of view of at least one camera.

It has been stated previously in Section 3.2.4 that the cameras must have a

similar vertical orientation. Experiments have shown that rotating the imaged

trajectories in the sequences by a small amount does not significantly affect the

accuracy of the synchronization; rotating the trajectories is equivalent to tilting the

camera. The experiments included cases where the trajectories from corresponding

sequences were rotated in the same direction, and in opposite directions. Rotating

the trajectories from the darkwalk sequences, displayed in Figure 12, by up to 15

degrees did not affect the recovered synchronization. This example is significant

because the motion in the sequences is predominantly horizontal, not vertical. As

this algorithm initially determines sub-sequences based on the direction of vertical

motion, it was possible that any slight changes in the camera orientation could

significantly affect the determination of sub-sequences. Other sequences featuring

more significant vertical motion, e.g., the darklab and darkroom sets of sequences,
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Figure 11: Frames taken from the walk6 sequences. Although it may seem that
there is not significant vertical motion, the trajectory segment shown in each frame
shows that there is sufficient motion for synchronization. For these sequences, α = 1
and ∆ = −30.5.
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(b) View 2

Figure 12: The trajectories of a light held in the hand of a person walking around a
room in the darkwalk sequences. It is noted that simple motion as displayed here
contains sufficient vertical motion for sub-sequences to be proposed and correctly
matched, and synchronization achieved.
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Figure 13: The effect of rotating trajectories on vertical velocity. To interpret this
chart, consider a horizontal line corresponding to a particular rotation angle. Then,
for each frame, grey indicates that the object is moving upwards, black indicates
downward motion, and white denotes a tracking failure.

and the indoor and outdoor sequences, allowed a rotation of up to 30 degrees.

Figure 13 illustrates the effect of rotating the trajectories on the determination

of sub-sequences. In this example, one of the backyarda sequences was rotated

at angles varying from −30 degrees through to 30 degrees. It can be seen that at

some locations, rotation has a significant effect on the direction of vertical velocity,

however overall, the effect of rotation on the direction of vertical motion in the

trajectories, and hence the determination of sub-sequences, is not significant.

Previously, it was stated in Section 3.2.6 that for each proposed corresponding

sub-sequence pair, a vote is cast for the range of ∆ values such that the sub-

sequences overlap, hence it is expected that the maximum range of votes will be

the sum of the number of frames in the two sub-sequences. The 9th singular value

of M is computed for every integer ∆̃ value as determined from the set of votes. If

the lengths of the sub-sequences are small relative to the lengths of the sequences,

the range of ∆̃ values will also be small. Even though a brute-force search over this

range is described in Section 3.3.1, in practice, this range is small, as demonstrated

in Table 3.

The algorithm failed to synchronize sequences containing periodic motion or

videos consisting of very short sub-sequences; these results are not listed in Ta-

ble 2. In the case of non-periodic motion, each sub-sequence should only have one

corresponding sub-sequence from the other sequence with a high alignment score.

However, when periodic motion exists, a sub-sequence may have high alignment

scores when paired with many different sub-sequences. Also, for non-periodic mo-

tion, each proposed corresponding sub-sequence pair will ideally have the same set
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Data set ln l′m ∆ range Frames

indoor 14.1 10.5 [-3,19] 23
outdoor 15.6 14.4 [724,747] 24

backyarda 23.3 22.0 [-194,-171] 24
backyardb 13.4 12.0 [-51,-28] 24
darkrooma 27.1 29.4 [244,274] 31
darkroomb 18.9 19.0 [71, 115] 45

Table 3: The mean number of frames, denoted by ln and l′m respectively, of sub-
sequences in various experiments. The range of ∆ values determined by the voting
scheme and the number of frames in this range are shown in the last two columns.

of supporting sub-sequence pairs. In the case of periodic motion, though, there

may appear to be many different valid sets of supporting sub-sequences. When this

is combined with the numerous high alignment scores mentioned above, each row

and column of the alignment matrix will contain many large spurious values, rather

than a unique large value that corresponds to the correct pair of sub-sequences.

This will cause the determination of proposed corresponding sub-sequence pairs to

be incorrect, and the voting scheme will likely fail to set the correct range of ∆

values.

3.5 Discussion

3.5.1 Reliance on the initial estimate of α

The accuracy of this algorithm relies heavily on α0, the initial estimate of α. Since

the initial estimate of the frame offset is dependent on α0, and the following 2D

search in ∆-α space is initialized from these values, accurate estimation of α0 is

crucial.

In Figure 8(a), it was shown that if the 9th singular value of M is plotted over

a range of ∆-α space, a narrow valley exists around the location of the actual syn-

chronization parameters. This occurs because a small change in the frame rate ratio

causes one of the sequences to become stretched temporally relative to the other,

causing the sequences to be unsynchronized; however, applying a small temporal

shift to one sequence can partially counter the mis-synchronization. As the error
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in the frame rate ratio increases, the temporal offset required for correcting the

error induced by the frame rate ratio must also increase proportionally, resulting

in the straight line segment shown in Figure 8(a). A simple diagram aiding in the

explanation of this problem is shown in Figure 14.

In Figures 14(a) and (b), the region marked A denotes the time period in which

the vertical motion is upwards in s1 and region B denotes the period of downwards

motion in s1. Regions C and D are similarly defined for s2, and E and F for s3.

Figure 14(a) shows an example where the proposed estimate of the frame rate ratio is

α̃ = 1 and the frame offset has been recovered correctly; ignoring perspective effects,

the tracked object’s vertical motion will be in the same direction in corresponding

frames of each sequence. Hence, in region A in S, the vertical velocity in each

frame will match the vertical velocity in region A in S ′; this will hold true for each

region. In Figure 14(b), α̃ is incorrect; however, in each of regions A to F, the

vertical velocity components in each sequence correspond over a large percentage

of each interval. It is noted that in this example, α̃ > α and the corresponding

compensatory frame offset ∆̃ is less than the actual frame offset ∆. The values of α̃

and ∆̃ relative to α and ∆, respectively, correspond qualitatively to (∆, α) locations

on the line displayed in ∆-α space in Figure 8(a). Although from this example, it

is not possible to show directly how this causes the 9th singular value to remain

small if a small temporal offset is applied to partially counteract the effect of a small

change in α, in practice this hypothesis holds.

As the lengths of the sequences increase, the effect of a small change in the frame

rate ratio is magnified, and sub-sequences that are temporally distant from the point

where the sequences are stretched become more mis-aligned than those close to that

point. This is demonstrated in Figure 14(b), where the midpoints of s2 and s′2 are

aligned. It is seen that the boundaries of s2 and s′2 are closely aligned, however

the boundaries of other sub-sequences located further from the alignment point are

mis-aligned. Because of this effect, more of the observations used to construct M are

inconsistent, which in turn causes the 9th singular value to increase. This means

that for longer sequences, the width of the valley as described in Section 3.3.2 is

reduced; for very long sequences, the search for the minimum of the 9th singular
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Figure 14: An example of how applying a temporal offset can minimize the effect
of mis-synchronization caused by an incorrect frame rate ratio; here, α = 1. In (a),
the sequences are perfectly synchronized, i.e. α̃ = α. In (b), the initial estimate
of α̃ differs from α by a small amount. The misalignment of sequences in (b) due
to this error can be minimized by applying a small temporal offset; in this case, a
negative offset is applied, resulting in S ′ shifting to the left. An explanation for the
regions A through to F is given in the text of Section 3.5.1.

value may start outside of the valley and hence the algorithm will fail to synchronize

the two sequences. Therefore, it is important that α0 is estimated accurately. A

possible solution for this problem is to divide longer sequences into a number of

shorter sequences, and then attempt to synchronize the shorter sequences.

3.5.2 Why the 9th singular value is used instead of the re-

projection error

As described in Section 3.3, the measure of synchronization used in the fine syn-

chronization step of this algorithm is the 9th singular value of the measurement

matrix given in Equation (5). Another potential measure of synchronization is the

reprojection error of observed trajectory points from the corresponding epipolar

lines. In this section, I outline some advantages of using the 9th singular value

instead of the reprojection error.

In Figure 15, both the 9th singular value and the reprojection error are dis-

played over a range of frame offsets. It is noted that the global minimum of the

9th singular value coincides with that of the reprojection error, yet the profile of

the curve of the 9th singular value is smoother. A possible explanation of why the
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Figure 15: The 9th singular value and the reprojection error are compared over a
range of frame offsets, with the frame rate ratio fixed at α = 1. For both curves,
a local minimum occurs at the actual temporal offset (∆ = 0) within the interval
determined by the voting scheme.

curve of the reprojection error is jagged is that when the epipolar geometry is esti-

mated at consecutive integer frame offsets, the epipoles may be located in different

positions in different frames because the measurements used to recover the epipo-

lar geometry are inconsistent due to the mis-synchronization. As the reprojection

error is dependent on the locations of the epipoles, the reprojection error computed

in consecutive frames may be unstable which is reflected in the jaggedness of the

curve.

The movement of the epipoles is illustrated in Figure 16. In each view, the other

camera, mounted on a tripod, is visible, thus providing a simple way of confirming

that the epipoles have been estimated correctly. For each frame offset, the funda-

mental matrix was estimated from the measurement matrix given in Equation (5),

and the epipoles were computed from the fundamental matrix. It can be seen that

the epipoles move significantly even over a small range of frame offsets.

A further advantage for using the 9th singular value as a measure of synchro-

nization is that it is computationally cheaper to calculate compared to computing

the vector f and the reprojection errors. The m×n measurement matrix Mα0,∆̃ can

be decomposed via the singular value decomposition (SVD) into a diagonal matrix

D containing the singular values, and orthonormal matrices U and V, such that:

Mα0,∆̃ = UDVT.
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(a) View 1 (b) View 2

Figure 16: The recovered epipoles are displayed as circles for integer frame offsets 5
frames on each side of the correct synchronization; epipoles for consecutive integer
frame offsets are joined by a line, and the epipoles for the actual frame offset are
denoted with an asterisk. The recovered epipoles coincide with the actual epipoles
only at the correct frame offset.

However, it is not necessary to compute all of U, D and V in computing the SVD.

To compute the 9th singular value of Mα0,∆̃, only the D matrix must be computed,

requiring approximately 2mn2 + 2n3 floating point operations as stated by Golub

and Van Loan [11]. Computing the reprojection error is a much more complicated

process. Firstly, the V matrix must be computed, which when computed alongside

the D matrix, requires approximately 2mn2 + 11n3 flops. Then, the fundamental

matrix is taken by forming a 3 × 3 matrix from the elements of the last column

of V; a rank 2 constraint is enforced upon the resulting matrix via a further SVD

operation. Finally, the reprojection error is computed via matrix multiplications

for every feature. Clearly, it is far more computationally efficient to compute only

the 9th singular value of Mα0,∆̃ instead of the reprojection error.

3.5.3 Alternative methods for aligning sub-sequences

In Section 3.2.4, the process of aligning a pair of sub-sequences by aligning the first

frames of the sub-sequences was described. This was one of three proposed methods

of aligning two sub-sequences:

1. Aligning the start of the sub-sequences. The first frames of each of the

sub-sequences to be aligned are considered to have been recorded at the same

instant in time. This method assumes that the tracked object is not occluded

or out of frame at the beginning of each sub-sequence.
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2. Aligning the midpoints of the sub-sequences. The middle frames of

each sub-sequence are considered to have been recorded at the same instant

in time. Whereas the first method may be affected if the sub-sequences do

not start at the same instant in time, this method may be more robust to

such problems as it assumes that both the start and end of each sub-sequence

are equally affected by missing trajectory data.

3. Aligning the peak of the trajectory in each sub-sequence. The frames

from each sub-sequence with the maximum y component are considered to

have been recorded at the same instant in time. This is different to Method 2

as the peak does not necessarily occur in the middle frame of the sequence.

This method will work best in sequences where the trajectory has a sharp

turning point.

To analyze the three alignment methods, experiments were conducted to ex-

amine the alignment matrices computed by each method for a number of video

sequences where α = 1. Five pairs of real video sequences were used; the sole syn-

thetic data set used was named fifty-t. A short description of each data set is

presented below:

• The fifty-t data set was created by projecting fifty parabolic trajectories in

3D space onto two virtual image planes; each trajectory represented by one

sub-sequence in each sequence of up to 100 frames in length. Then, each sub-

sequence had a random number of frames (up to 20 frames) deleted from each

end of the sub-sequence, i.e., corresponding sub-sequences from each sequence

had a different number of frames deleted. The trajectories had a sharp, well

defined peak.

• In the indoor video sequences, two people are throwing a ball to each other.

One camera is located behind each person, such that when the ball moves

away from one camera, it is moving towards the other camera. Frames from

these sequences are shown in Figure 16. In most sub-sequences, the peak of

the trajectory was easily determined.
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• Frames from the outdoor data set are illustrated in Figure 10. In these

sequences, two people are bouncing a ball to each other. The cameras were

placed to either side of one person, such that when the ball moves away

from one camera, it is also moving away from the other camera. Hence, it is

expected that the perspective effects are similar in each view. As the cameras

are located high relative to the motion in the sequences, a sharp peak is not

always visible for each ballistic trajectory; however, frequent bouncing events

ensure that the first frames of many sub-sequences are correctly determined

for both sequences.

• The backyardb, walk6, and darkwalkb sequences contain two adjacent cam-

eras recording a person performing some action. Frames from the backyardb

and walk6 sequences are shown in Figures 9 and 11 respectively. As the

cameras are adjacent, it expected that the perspective effects are similar in

each view. Also, as the camera locations in these sequences are low relative

to the motion in the sequences, the peaks of the trajectories are often easily

identifiable.

Numerical results from the experiments are given in Tables 4 and 5. The ratio of

alignment scores given in Table 4 is calculated from the median alignment score for

the proposed corresponding sub-sequence pairs and the median alignment score for

all other sub-sequence pairs. In Table 5, a false positive is defined as a sub-sequence

pair that was incorrectly labelled as a proposed corresponding sub-sequence pair; a

false negative is a sub-sequence pair that should have been labelled as a proposed

corresponding sub-sequence pair, but was not.

Surprisingly, aligning the peaks of the trajectories in each sub-sequence gives the

best results in some cases, typically in sequences where the cameras are level and

“behind” the object motion, i.e., the tracked object moves away from both cameras

in corresponding frames in each sequences, as occurs in the outdoor, darkwalkb and

walk6 sequences. In sequences with this camera setup, the perspective effects are

similar in each view. However, it can be seen that the number of correctly proposed

corresponding sub-sequences relative to the number of false positives produced by
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Sequence Alignment Ratio of
method alignment scores

fifty-t First frame 4.30
(synthetic Middle frame 4.42

data) Trajectory peak 3.07
First frame 4.69

indoor Middle frame 4.36
Trajectory peak 4.33

First frame 3.15
outdoor Middle frame 3.41

Trajectory peak 4.19
First frame 4.40

backyardb Middle frame 4.72
Trajectory peak 3.63

First frame 3.14
walk6 Middle frame 2.69

Trajectory peak 3.14
First frame 5.92

darkwalkb Middle frame 5.45
Trajectory peak 5.92

Table 4: The ratio of the median alignment score for proposed corresponding sub-
sequence pairs and the median alignment score of other sub-sequence pairs is shown
for various video sequence pairs. For each pair of video sequences, three different
methods of aligning sub-sequences were used.

this method is often larger than for other methods.

Comparing the method of aligning sub-sequences by the first frames of the sub-

sequences with the method of aligning by the middle frames, it is shown that neither

approach consistently produces a better ratio of the median alignment scores. It

can also be seen in Table 5 that neither method consistently provides better results

in correctly proposing corresponding sub-sequences.

It was expected that for the fifty-t data set, aligning the sub-sequences

by their middle frames would provide the best results because deleting a ran-

dom number of frames from the start of each sub-sequence and then aligning the

sub-sequences by their first frames would cause mis-alignment. Aligning the sub-

sequences by the middle frames was expected to minimize the mis-alignment, since

a random number of frames would also be deleted from the end of each sub-sequence

as well. However, the results show that the ratio of the median alignment scores
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Sequence Alignment Correct False False
method PCSPs positives negatives

fifty-t First frame 44 1 1
(synthetic Middle frame 42 2 3

data) Trajectory peak 41 0 4
First frame 7 5 5

indoor Middle frame 9 3 3
Trajectory peak 6 5 6

First frame 5 2 6
outdoor Middle frame 7 5 4

Trajectory peak 8 3 3
First frame 17 2 2

backyardb Middle frame 16 1 3
Trajectory peak 15 4 4

First frame 14 0 4
walk6 Middle frame 8 4 10

Trajectory peak 9 5 9
First frame 8 0 0

darkroomb Middle frame 8 0 0
Trajectory peak 8 0 0

Table 5: The number of correctly proposed corresponding sub-sequence pairs (PC-
SPs), and the number of false negatives and false positives are given for the three
alignment methods for various sequences.

was only marginally better than the ratio of scores produced when aligning the

sub-sequences by their first frames; further, aligning the sub-sequences by their

first frames resulted in fewer false negatives and fewer false positives.

The method of aligning sub-sequences by their first frames gives good results

and outperforms the alternative method of aligning sub-sequences by their middle

frames when proposing corresponding sub-sequence pairs for the fifty-t data set.

Also, since sub-sequences may be separated by a bounce event, which is expected to

occur in temporally corresponding frames from each sequence, it is sensible to use

this event in the alignment process. Hence, as detailed in Section 3.2.4, it is preferred

to align a sub-sequence pair by the first frames of each of the sub-sequences.

3.5.4 Alternative measures for computing alignment scores

It is noted that in Equation (3), only the direction of the object’s vertical velocity

component, and not its magnitude, is used in the computation of the alignment
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score. An alternative score that incorporates the magnitude of the velocity may

provide a more accurate measure of synchronization. I have experimented with us-

ing the correlation coefficient, computed from the vertical component of the object’s

motion in corresponding frames from each view, as an alignment score. Unfortu-

nately, perspective effects cause this scheme to be less effective than expected.

Figure 17(a) shows an object moving in two parabolic segments. Two cameras

view this motion, and Figures 17(b) and (c) display the scene as viewed by each

camera. It can be seen that the object’s motion in the parabolic segment closest

to the camera appears larger than the motion in the distant segment. Figure 17(d)

shows a scatterplot, where each point on the plot relates the vertical velocity com-

ponent in frames from each view. Two distinct line segments can be seen on the

plot, with each line corresponding to one parabolic segment in 3D space. The gradi-

ent of each line is different due to perspective effects; observed motion close to one

camera appears larger than when viewed by a distant camera. As more parabolic

segments are added, the number of line segments in Figure 17(d) increases, which

causes the correlation coefficient to decrease. Hence, if this measure was to be used,

it could be affected by the number of sub-sequences, which is undesirable. Whilst

the simpler alignment score given in Equation (3) does not take into account the

magnitude of vertical motion, it ignores perspective effects, hence it is a preferred

measure of sub-sequence alignment.

3.5.5 Comparisons with other synchronization algorithms

As previously mentioned, this algorithm bears some similarities to other previously

published algorithms by other authors. It is not trivial to compare these algo-

rithms’ performance in synchronizing the same video sequences as each algorithm

makes different assumptions and has different input requirements as discussed in

Section 3.1. In this section, the similarities and differences of these algorithms are

highlighted, and their complexities are examined from a theoretical perspective.

Firstly, I present a basic complexity analysis of my algorithm. In the fine align-

ment step, an m× n measurement matrix M is constructed for each value of α and

∆, and a singular value decomposition (SVD) is then performed on each instance
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Figure 17: (a) Two virtual cameras, with optical centres C1 and C2, view two
parabolic trajectory segments in 3D space. (b) The scene as viewed by C1. (c) The
scene as viewed by C2. (d) A scatterplot of the vertical velocity v as viewed by C1

vs the vertical velocity v′ as viewed by C2 in corresponding frames of each sequence.

of M. It is noted that SVD is computationally expensive: computing only the diag-

onal matrix D, where M = UDVT, requires 2m2n2 + 2mn3 floating point operations if

m ≥ n [11]. Now, each of the m rows in M contains one observation, and as there is
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one observation per frame, the number of frames is also m.

At the fine synchronization step in my algorithm, there will be at most m mea-

surement matrices constructed, each with up to m observations. Hence, the com-

plexity of the fine synchronization step is O((m2n2 + mn3)m) = O(m3n2 + m2n3).

However, this does not include the computation of the alignment score expressed

in Equation (3), which consists of computationally cheap integer additions and

one integer division operation, and it is expected that the number of measurement

matrices will be much less than m, as demonstrated in Table 3.

This algorithm is similar to a dynamic time warping algorithm by Rao et al. [31]

in that the same measure of synchronization is used. However, the algorithms differ

significantly in the restrictions made on the input trajectory: whereas my algorithm

requires the tracked object to exhibit significant vertical motion, Rao et al. require

the trajectory to be continuous (i.e., it is not clear how to handle missing trajectory

data), and that the first observations in the trajectory data in each view were

recorded at the same instant in time (i.e., the initial frame offset must be known).

Rao’s algorithm implements a coarse-to-fine approach. At the finest level of

detail, the dynamic time warping algorithm computes the SVD of a measurement

matrix containing up to m observations for each of m2 pairs of frames. Hence, the

complexity of Rao’s algorithm is O((m2n2 + mn3)m2) = O(m4n2 + m3n3), which is

m times greater than my algorithm’s fine synchronization step.

Tresadern and Reid proposed two video synchronization algorithms, one for the

affine camera model [42] and another for the perspective camera model [41]. The

comparison discussed below is relevant to their algorithm for the perspective camera

model only. My algorithm is similar to theirs in that a rank-based approach is used

to synchronize the sequences from trajectory data alone. However, the methods

of synchronization are different. My algorithm requires only a single trajectory to

propose α0 and searches throughout a small interval to estimate ∆0 before iteratively

refining both parameters. On the other hand, Tresadern and Reid’s algorithm

synchronizes sequences by determining pairs of temporally corresponding frames

from at least 8 trajectory correspondences via an exhaustive search; α and ∆ are

then recovered from this set of frame correspondences.
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Tresadern and Reid’s algorithm will construct a c × 9 measurement matrix for

each pairing of frames (for c corresponding trajectories from each sequence), re-

sulting in m2 measurement matrices. As their algorithm only requires the diagonal

matrix produced by SVD, the complexity of their algorithm is O((c2n2 +cn3)m2) =

O(c2m2n2 + cm2n3). Since it is expected that c �
√

m, i.e., the number of cor-

respondences is much less than the square root of the number of frames in each

sequence, Tresadern and Reid’s algorithm provides greater computational efficiency

at the expense of requiring more pre-processing to track at least 8 objects and find

trajectory correspondences between sequences.

A final comparison is provided between my algorithm and an algorithm by Caspi

and Irani [3,4] that recovers the frame offset of two sequences recorded by cameras

with a known ratio of frame rates. Whereas the previous algorithms discussed in this

section have used singular values as a measure of synchronization, Caspi and Irani’s

algorithm explicitly computes the fundamental matrix and uses reprojection error as

a measure of synchronization. Recovering the fundamental matrix requires the SVD

to compute the orthogonal V matrix which is computationally more expensive than

calculating only the diagonal D matrix, requiring 2mn2+11n3 flops [11]. Further, the

fundamental matrix must be a rank 2 matrix which can be enforced via SVD. Then,

the reprojection error is computed for every data point. These extra operations will

be of order m: the step to enforce the rank 2 constraint will take constant time

as the fundamental matrix is always a 3× 3 matrix, and the number of operations

required to compute the reprojection errors is linear in the number of points for

which the reprojection error is computed, i.e., m. As the complexity of these steps

is insignificant relative to computing the SVD of the measurement matrix, they are

not considered further in this analysis.

Caspi and Irani’s algorithm has a computationally expensive initialization step

that estimates ∆ via an exhaustive search. As it searches through m frames, the

algorithm computes the SVD of an m × n measurement matrix. Hence, the com-

plexity of the algorithm is O((m2n2 +mn3)m) = O(m3n2 +m2n3). This is the same

as my algorithm that also recovers the frame rate ratio of the two sequences.

The complexities of the algorithms are summarized in Table 6.
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Algorithms Complexity
My algorithm O(m3n2 + m2n3)
Rao et al. [31] O(m4n2 + m3n3)

Tresadern and Reid [41] O(c2m2n2 + cm2n3)
Caspi and Irani [3, 4] O(m3n2 + m2n3)

Table 6: A summary of the complexities of various synchronization algorithms.

Whilst all of these algorithms are intended for offline use, the complexity of

the algorithm is still important, particularly since none of the algorithms operate

in linear time. As the algorithm detailed in this chapter is more efficient than

Rao’s algorithm, it would be preferred for use where it is known that the ratio

of frame rates of the two sequences is constant. For sequences where at least 8

corresponding trajectories are available in many frames of each sequence and where

c�
√

m, Tresadern and Reid’s algorithm gives a faster computation time. Finally,

my algorithm would be expected to run in a similar time as Caspi and Irani’s

algorithm, yet it would also recover the frame rate ratio.

3.6 Conclusion

It has been shown that the frame offset and frame rate ratio of two unsynchro-

nized videos can be recovered using the trajectory of only one object moving with

significant vertical motion. Other similar algorithms require multiple object tra-

jectories or stationary background points to be specified in order to recover both

synchronization parameters.

A coarse-to-fine approach was presented that initially used the tracked object’s

vertical motion to determine matching sub-sequences, with a voting scheme used

to provide an initial estimate of the synchronization parameters. A measure of

synchronization derived from two-view epipolar geometry was calculated at each

value of α and ∆ as they were iteratively refined via a search in ∆-α space. It was

demonstrated that this measure is preferred to the geometric reprojection error, and

that a good approximation of the frame rate ratio can be computed from vertical

motion data alone. The algorithm was shown to accurately recover the frame rate

ratio and frame offset relating pairs of synthetic and real video sequences where
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trajectory information was absent in a significant proportion of frames.
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Chapter 4

Motion guided synchronization

4.1 Introduction

In this chapter, I present an algorithm that synchronizes two video sequences of

an object undergoing ballistic motion. The epipolar geometry and the motion of

the object are exploited such that the algorithm converges rapidly to find pairs

of frames from each video sequence recorded at the same time. From the frame

indices of multiple such pairs of frames, the values of α and ∆ can be recovered.

The algorithm requires the cameras to be weakly calibrated, and it is assumed that

the cameras’ intrinsic and extrinsic parameters remain fixed whilst the sequences

are recorded. This algorithm is shown to accurately recover the ratio of frame rates

and the temporal offset of the two sequences to sub-frame accuracy.

My algorithm is similar to that of Carceroni et al. [1] in that epipolar geometry is

used to find temporally corresponding frames from each sequence. Their algorithm,

proposed corresponding frames from each sequence by firstly taking a feature point

detected in a frame of a reference sequence and using the known epipolar geometry

to compute the corresponding epipolar line in the other video sequence. In this sec-

ond sequence, feature points were detected and tracked between consecutive frames;

features that crossed the computed epipolar line were deemed to have satisfied the

epipolar constraint at some time instant between frames and thus became candidate

matches for the point from which the epipolar line was computed. From these point

matches, tentative frame correspondences from each sequence were proposed, from

59
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which the synchronization parameters were recovered via RANSAC. Carceroni et

al. demonstrated that their approach can be applied to N ≥ 2 video sequences.

The algorithm presented here varies to that of Carceroni et al. in that an it-

erative approach is used to exploit object motion such that the algorithm rapidly

converges to find the time instant at which the object crossed the epipolar line.

Only a single object is required to be tracked, and the nature of the algorithm

requires that the class of motion is restricted. In the basic algorithm presented in

Section 4.2, it is assumed that the video sequences are short and contain the ball

undergoing a single ballistic motion, i.e., the ball firstly moves upwards and then

moves downwards. Later, in Section 4.3, the algorithm is extended to synchronize

longer video sequences containing multiple such motions. My algorithm is designed

to synchronize two video sequences, whereas Carceroni’s algorithm can synchronize

multiple video sequences recorded by weakly calibrated cameras.

Results are presented for applying the algorithm to synthetic and real data where

the cameras remain stationary. It is shown that the algorithm can simultaneously

recover the frame rate of the sequences to sub-frame accuracy and the ratio of frame

rates of the two sequences. It is also demonstrated that the influence of noise on

the coordinates of the trajectory used for synchronization is not significant.

In the following sections, frame i in video sequence 1 is denoted by Si and

similarly, frame j in sequence 2 is denoted by S ′j. Throughout this chapter, the

term corresponding frames is used to describe a pair of frames, one from each video

sequence, that are recorded at the same instant in time. I use a ball as the moving

object in this chapter, though it can be substituted for any object undergoing

ballistic motion. To avoid confusion with other moving objects in the videos, the

moving object tracked throughout the sequences is referred to as a ball throughout

this chapter.

4.2 The basic algorithm

The basic algorithm consists of two steps: determining pairs of temporally cor-

responding frames from each sequence by exploiting object motion and epipolar
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geometry, then estimating the ratio of frame rates and the frame offset from these

pairs of frames. It is assumed that the fundamental matrix relating the two cameras

has already been estimated from a number of corresponding stationary background

points and that the ball’s trajectory throughout each sequence has been recovered

by an object tracking algorithm or manual tracking.

4.2.1 Finding a pair of corresponding frames

The first step is to establish a pair of corresponding frames from the two video

sequences by exploiting epipolar geometry and the ball’s motion. Let F denote the

fundamental matrix relating the two cameras. For video sequences recorded by

stationary cameras with fixed intrinsic parameters, F is invariant and the images of

all corresponding stationary scene points satisfy the epipolar constraint in all frames

of the video sequences. If the ball’s location in frame Si is known and denoted by

xi, the corresponding epipolar line l′i in S ′j can be computed via l′i = Fxi. If Si and

S ′j are corresponding frames, then the imaged locations of corresponding moving

points in Si and S ′j also satisfy the epipolar constraint. More specifically, the ball’s

imaged position x′j in frame S ′j will lie on the epipolar line l′i. This fact is used to

search for the correct alignment. It is noted that satisfying the epipolar constraint

is a necessary, but not sufficient, requirement for synchronization. However, as will

be seen, motion and trajectory constraints are applied to ensure that the epipolar

constraint is satisfied only in temporally corresponding frames.

To find a pair of corresponding frames, first, a frame Si is randomly chosen where

the ball’s vertical velocity is significant (explained later in Section 4.5). Rather than

performing a brute force search through all frames S ′j to find the corresponding

frame in S ′, the ball’s vertical motion is exploited to reduce the search. A frame S ′j
is selected such that the ball’s direction of vertical motion is the same as in frame

Si. It is assumed that the frame rate of the sequence is sufficiently high that the

ball’s inter-frame motion is approximately linear; thus, the ball’s velocity in S ′j can

be approximated from the ball locations in two consecutive frames. Then, from the

ball’s position in S ′j and its velocity, the number of frames until the ball crosses the

epipolar line l′i can be estimated. The following steps outline an iterative method
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to estimate the value of j given an epipolar line l′i:

1. Calculate the ball’s inter-frame velocity in frame S ′j: v′
j = x′j+1 − x′j.

2. Let t′ be the linear approximation of the ball’s trajectory in S ′j. Assuming

a constant velocity model, t′ is a straight line passing through x′j and x′j+1,

calculated via the cross product: t′ = x′j × x′j+1.

3. Next, calculate the intersection point p′ of the approximated trajectory t′ and

the epipolar line l′i, via: p′ = t′ × l′i.

4. To estimate the number of frames until the ball crosses the epipolar line, firstly,

let d′ be the vector from x′j to the intersection point p′, i.e., d′ = p′ − x′j.

Then, the ball is estimated to cross the epipolar line in n = ‖d′‖/‖v′
j‖ frames.

5. Using the norm of vectors d′ and v′
j and ignoring their orientations in the

previous step introduces an ambiguity in the direction of the search. Fig-

ure 18(a) illustrates the case where the corresponding frame occurs in the

future; the algorithm should look forwards in time to locate the frame when

the ball crosses the epipolar line. Conversely, in Figure 18(b), the epipolar

line crossing occurred in the past, hence, the algorithm should search back-

wards for the corresponding frame. The direction ambiguity can be resolved

by examining the vectors v′
j and d′. The search should be directed forwards if

both v′
j and d′ have the same orientation; otherwise, the search should move

backwards. Thus, n is then modified via: n← n sgn(v′
j · d′).

6. The value of n is used to update j and to determine whether or not the process

terminates at this iteration:

• If n ∈ [0, 1), the ball must have crossed the epipolar line in the time

interval [j, j + 1). The synchronized frame can then be estimated to be

frame j ← j + n. At this stage, the iteration can terminate and the

temporal correspondence Si ↔ S ′j is established to sub-frame accuracy.

• If n /∈ [0, 1), the frame in S ′ that is closest in time to frame Si and not

recorded after frame Si must be j + bnc, where bnc is the largest integer
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Figure 18: The ball’s velocity is used to estimate where to search for the corre-
sponding frame, assuming constant velocity. In (a), the corresponding frame is in
the future, whereas in (b), it is in the past.

less than or equal to n. The strategy is to update j via j ← j + bnc

and repeat the process from Step 1. Although j is updated here by

an integer, synchronization to sub-frame accuracy is achieved when the

iteration terminates as described in the previous bullet point. Note that

the integer update bnc is enforced here because the ball’s velocity is

approximated using the forward, rather than the backward, difference.

4.2.2 The convergence of the algorithm

To demonstrate that the algorithm always converges, the four different states that

can arise, as shown in Figure 19, are analyzed below:

1. State 1: The ball is below the epipolar line l′i, and moving upwards towards the

epipolar line, as shown in Figure 19(a). In this state, the ball is decelerating

due to gravity. Hence, the velocity will decrease as the ball moves closer to

l′i. Thus, n, the number of frames to look forward, is underestimated as v′
j,

the magnitude of the velocity in frame j, is larger than at any frame between

frame j and the ball crossing the epipolar line. Hence, at the next iteration,

the algorithm will remain in State 1 until 0 ≤ n < 1, in which case convergence

has been achieved.

2. State 2: The ball is above the epipolar line and moving upwards away from the
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epipolar line, as shown in Figure 19(b). As in State 1, the ball is decelerating,

but in this case, as the ball is moving away from the epipolar line, the number

of frames to look backward for the point where the trajectory crosses the

epipolar line will be overestimated. It is noted that in Step 6 in Section 4.2.1,

if n /∈ [0, 1), j is updated via j ← j + bnc; however because n < 0, this

will increase the overestimation of the number of frames to search backwards.

Thus, at the next iteration, the algorithm will switch to State 1.

3. State 3: The ball is below the epipolar line and accelerating downwards away

from the epipolar line, as shown in Figure 19(c). For the same reason given

for State 1, |n| will be underestimated. However, as n < 0 and bnc is used

to update j, an overestimate may occur. If bnc is an underestimate, the

algorithm will remain in State 3, and at the next iteration, the ball’s location

in frame j + bnc will be closer to the epipolar line than in frame j, as is the

case in State 1. A series of underestimations will eventually result in frame j

being the first frame after the ball has moved below the epipolar line. Then,

in this frame, −1 ≤ n < 0. Thus, an overestimate will occur as bnc = −1, the

ball in frame j +bnc will be located above the epipolar line and the algorithm

will move to State 4. In the following iteration in State 4, convergence will

occur since 0 ≤ n < 1.

4. State 4: The ball is above the epipolar line and is accelerating downwards

towards the epipolar line, as shown in Figure 19(d). As in State 2, n will be

overestimated if n > 1 and the algorithm will move continue in State 3 at the

next iteration. Otherwise, if 0 ≤ n < 1, the iteration will terminate due to

convergence.

The analysis of the four cases above has not taken into account perspective

foreshortening. When the ball is located close to a camera, its motion will appear

to be exaggerated compared to when it is far from a camera. This may cause

the expected underestimates and overestimates as described in the analysis to be

magnified or reversed (i.e., what was expected to be an underestimate may become

an overestimate, and vice versa). In practice, in a given iteration, if the ball is
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Figure 19: These four diagrams illustrate the four states that the algorithm may
enter.

located within a few frames of the epipolar line, the perspective effects are not

significant and convergence occurs as expected. As the distance between the ball

and the epipolar line increases, the influence of perspective effects increases. The

algorithm will still continue to search in the correct direction in time to locate the

instant of the epipolar line crossing, but convergence may be achieved at a slower

rate since the estimate of how many frames to look forwards or backwards will not

be as accurate.

Figure 20 shows an example where the ball is moving upwards towards the

epipolar line and decelerating due to gravity, with the iteration arbitrarily starting

at j = 2, putting the algorithm in State 1. The velocity of the ball is shown by the

line denoted by v2 and the ball is expected to cross the epipolar line in frame 11

based on the assumption of constant velocity. As expected from the above analysis,

this is an underestimate of the number of frames to look forward. In the following

iterations, this estimate of j is refined to frame 15 using the ball’s velocity v11 at

frame 11, then to frame 16, and finally, frame 16.20.
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Figure 20: A demonstration of the convergence of the algorithm, as described in
Section 4.2.2. The frame numbers of some trajectory coordinates used by the algo-
rithm in the convergence process are displayed.

4.2.3 Combining observations to recover the synchroniza-

tion

Given a frame Si, the iterative procedure in Section 4.2.1 estimates the correspond-

ing frame j in S ′ to sub-frame accuracy. If this procedure is repeated for frames

{i1, . . . , ik}, where k ≥ 2, the set of corresponding frames {j1, . . . , jk} from the sec-

ond video sequence can be established. Since the values {i1, . . . , ik} and {j1, . . . , jk}

are related via Equation (1), the values of α and ∆ can be estimated via least-

squares.

It has already been established that the trajectory data in frames {i1, . . . , ik} of

S and frames {j1, . . . , jk} of S ′ satisfy the known epipolar geometry. If the recovered

values of α and ∆ are correct, then other temporally corresponding points on the

ball’s trajectory will also satisfy the epipolar geometry.

4.3 Extending the algorithm to handle multiple

vertical motions

The method presented in the previous section deals with the case where the video

sequences are short and contain an object moving upwards and then downwards.

In this section, the basic algorithm is extended to handle longer video sequences
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containing multiple upward and downward motions, thus broadening the range of

video sequences that can be synchronized.

In Chapter 3, an algorithm was presented to synchronize a pair of video se-

quences containing multiple significant vertical motions. In the coarse synchro-

nization step presented in Section 3.2, a method of proposing corresponding sub-

sequences from each sequence was described. Sub-sequences were introduced in

Section 3.2.1, and it can be seen that the video sequences required by the basic

algorithm described in the previous subsection fit the definition of a sub-sequence.

To synchronize sequences containing many sub-sequences, the basic algorithm

is extended here to allow corresponding frames to lie within any sub-sequence that

has a proposed corresponding sub-sequence in the other sequence. The extended

algorithm is outlined as follows:

1. The proposed corresponding sub-sequence pairs from each sequence are found

using the algorithm from Section 3.2.

2. A pair of corresponding sub-sequences, (sn, s
′
m) is randomly selected. Then,

a frame Si containing trajectory data is randomly selected from sn.

3. The ball’s direction of vertical motion in frame Si is computed. Then, the

set of frames in s′m where the ball has the same direction of vertical motion

is determined and frame S ′j is randomly selected from these frames. If there

are no frames in s′m with the same direction of vertical motion, the algorithm

discards this chosen frame Si and repeats from Step 2 above.

4. The numbered steps in Section 4.2.1 are used to iteratively compute the frame

S ′j corresponding to frame Si. Then, Steps 2 to 4 above are repeated multiple

times to determine a set of frame correspondences from which α and ∆ can

be recovered.

A critical assumption made in this extension is that the proposed corresponding

sub-sequences from each sequence are correctly identified. If the video sequences to

be synchronized contain many short sub-sequences, some proposed corresponding

sub-sequence pairs may be incorrect and the least squares method used to recover
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α and ∆ as outlined in Section 4.2.3 may not be suitable. Instead, RANSAC could

be used to fit a straight line with gradient α and y-intercept ∆ to the frame indices

{i1, . . . , ik} and {j1, . . . , jk}, thus ensuring that any outliers have no influence on

the recovered synchronization parameters.

Thus, if the fundamental matrix relating the two cameras is known, this exten-

sion to the algorithm enables synchronization of extended video sequences contain-

ing multiple ballistic motions.

4.4 Results

The results for synchronizing synthetic and real data sets are presented in this

section. The synthetic data allow the accuracy of the algorithm to be evaluated

in the presence of added noise, whilst the experiments using real video sequences

demonstrate that the algorithm can be applied in a practical setting. First, I analyze

the effect of adding noise to the trajectories in synthetic sequences, and then to

the stationary points used to estimate the fundamental matrix. Then, I present

the results of synchronizing real video sequences. These results are divided into

two subsections: firstly, using the basic algorithm from Section 4.2 to synchronize

short video sequences containing a single ballistic motion, and secondly, using the

extended version of the algorithm, presented in Section 4.3, to synchronize longer

video sequences containing many such motions, some of which may be visible in

only one video sequence due to occlusions or the ball moving out of frame in one

view.

4.4.1 Simulated experiments

I used simulated trajectories to analyze the accuracy of my algorithm in the pres-

ence of noise. The setup used in my experiments on synthetic data is shown in

Figure 21, where I simulated a ball being kicked towards a set of football goals.

The fundamental matrix was estimated from 12 points located at the corners of the

goals and line markings. The ball’s maximum vertical speed was 26 pixels/frame

at the point of the trajectory closest to the camera, and averaged 7 pixels/frame
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Figure 21: A simulated trajectory and football goals as viewed by two cameras,
with the ball locations in each frame marked by circles.

σ k α̂ error (%) ∆̂ error (frames) Iterations

0.25 2 0.261 0.144 3.8
0.25 5 0.059 0.032 3.8
0.25 8 0.042 0.021 3.8
0.50 2 0.415 0.236 4.0
0.50 5 0.174 0.089 4.0
0.50 8 0.093 0.047 4.0
1.00 2 1.624 0.802 4.2
1.00 5 0.346 0.192 4.2
1.00 8 0.226 0.146 4.2

Table 7: Results for recovering α̂ and ∆̂ from k pairs of corresponding frames
when isotropic Gaussian noise of standard deviation σ is added to the trajectory
coordinates. The number of iterations required for convergence for each case is
shown. The errors shown are the mean over 100 trials.

throughout both sequences.

To evaluate the accuracy of the algorithm in the presence of noise, isotropic

Gaussian noise was added to the x and y components of the ball’s position in each

frame, and no smoothing process was applied to the trajectory. Table 7 shows the

results for recovering the synchronization from trajectories perturbed by Gaussian

noise of a range of standard deviations, σ. In these experiments, the ratio of frame

rates and the frame offsets were fixed to isolate the influence of noise. The true

values were ᾱ = 5/6 and ∆̄ = 3.5 frames, and the sequences contained 80 frames. At

each level of noise, I compared the results of using 2, 5, and 8 pairs of corresponding

frames in estimating α̂ and ∆̂.

It can be seen from Table 7 that when noise is present, the accuracy of the
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Goals σ α̂ error (%) ∆̂ error (frames) Iterations

0.25 0.430 0.189 3.8
Standard 0.50 0.861 0.366 3.9

1.00 1.703 0.690 3.6
Small 0.01 2.789 1.285 3.4

0.05 7.873 3.121 3.8
0.25 1.168 0.538 3.8

Distant 0.50 1.688 0.702 3.8
1.00 3.512 1.621 3.6

Table 8: The mean errors in estimating α̂ and ∆̂ when the fundamental matrix
is estimated from points affected by noise. The synchronization parameters were
calculated from 5 pairs of corresponding frames, over 100 trials.

recovered synchronization parameters, α̂ and ∆̂, is significantly improved by solving

for more pairs of corresponding frames. Even with significant amounts of noise, the

algorithm successfully computes the ratio of frame rates. The recovery of the frame

offset is affected by noise more than the recovery of the frame rate ratio, however

acceptable accuracy is still achieved. As expected, the rate of convergence decreases

as the level of noise increases. In the noise free case, an average of 3.63 iterations

were required for the algorithm to converge to sub-frame accuracy.

The accuracy of this algorithm relies heavily on the accurate estimation of the

fundamental matrix; errors in computing epipolar lines will lead to errors in de-

termining pairs of corresponding frames. The effect of estimating the fundamental

matrix from stationary points perturbed by noise and the importance of the position

of the selected stationary points relative to the trajectory were examined.

In the following experiments, the locations of the twelve points used to estimate

the fundamental matrix were perturbed by isotropic Gaussian noise of various values

of σ. Three sets of experiments were conducted: first, using the same football goals

as in the previous experiment; second, with the goals one-tenth the size of those used

previously; third, with the standard size goals located 100m from the trajectory in

the virtual world. These three cases are illustrated in Figure 22.

Table 8 shows the mean error in estimating the ratio of frame rates and frame

offset over 100 trials. Again, I fixed the synchronization parameters at ᾱ = 5/6 and

∆̄ = 3.5 frames, and no noise was added to the points in the trajectories.
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(a) View 1 (normal) (b) View 2 (normal)

(c) View 1 (small) (d) View 2 (small)

(e) View 1 (distant) (f) View 2 (distant)

Figure 22: Three scenarios used to test the influence of noise on points used to
estimate the fundamental matrix. (a) & (b): two views of large goals and a tra-
jectory passing over the goals. (c) & (d): Goals one-tenth the size of the goals in
the normal case, with the trajectory passing over the goals. (e) & (f): Large goals,
but distant from the trajectory. The same trajectory was used in each experiment.
Results are shown in Table 8.

From the results in Table 8, it is clear that suitable stationary points are required

for estimating the fundamental matrix. This is highlighted in the Small and Distant

cases. In the former case, the image of the goals spanned only ten pixels vertically,

and less than one hundred horizontally, so the level of noise was significant. In the

Distant case, the goals were placed 100m away from the trajectory in the virtual

world, so the points used to estimate the fundamental matrix were not located close

to the trajectory. Hence, in order to achieve accurate synchronization, it is essential
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that the stationary points used for estimating the fundamental matrix are not only

spatially well separated, but also surround the trajectory in each dimension. It can

also be noted in this experiment that fewer iterations were required on average for

convergence than in the experiments where noise was added to the trajectory data

as detailed in Table 7; here, the trajectory was not perturbed by noise, leading to

a more accurate estimation of the ball’s velocity, and faster convergence.

4.4.2 Real video sequences containing a single ballistic tra-

jectory

The algorithm was tested on real video sequences recorded by cameras capturing

25 interlaced frames per second. Each interlaced frame was separated into two

independently recorded fields, so the data were captured at 50 fields per second; the

resolution of each field was 720×288 pixels. For each data set, at least 12 stationary

background points were manually selected from which the fundamental matrix was

estimated. The centroid of the ball was manually tracked throughout the video

sequences, although the method of tracking should not affect the synchronization

algorithm.

Figures 23 to 26 show frames taken from the real video sequences, with the ball’s

trajectory overlaid. In these figures, the ball’s trajectory throughout each of the

short video sequences is displayed. In one view, some points on the trajectory are

circled, and in the other view, the epipolar lines corresponding to these points are

shown and the locations where these epipolar lines intersect with the trajectory are

marked.

Table 9 summarizes the results of synchronizing the real video sequences. Where

ᾱ is given as 0.5, even-numbered frames were discarded from one sequence to test

the estimation of α̂. “Forced 1” indicates that I assumed that ᾱ = 1, and estimated

∆̂ accordingly.

For each experiment where the frame rate was not altered artificially, the re-

covered synchronization parameters were used to resample the trajectory data of

S (using linear interpolation of the trajectory data) to match the frame rate of S ′
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Sequence pair ᾱ α̂ ∆̄ (frames) ∆̂ (frames)

1 0.94 4.5 4.73
outdoor 1 Forced 1 4.5 4.50

0.5 0.51 2.75 2.59
1 1.00 −8 −8.32

indoor2 1 Forced 1 −8 −8.36
0.5 0.48 −3.5 −3.21
1 1.01 −20 −19.62

kick6 1 Forced 1 −20 −19.31
0.5 0.51 −9.5 −10.64
1 0.99 −67 −67.26

kick8 1 Forced 1 −67 −67.36
0.5 0.50 −33 −32.57

Table 9: The result of synchronizing pairs of real video sequences using the basic
algorithm.

Sequence pair Mean symmetric epipolar distance

outdoor 3.52 pixels2

indoor2 10.71 pixels2

kick6 5.32 pixels2

kick8 1.05 pixels2

Table 10: The mean symmetric epipolar distance resulting from using the recov-
ered synchronization parameters for pairs of real video sequences using the basic
algorithm.

and nullify the frame offset. Then the ball’s location in each frame of S was used

to compute an epipolar line in the corresponding frame of S ′. The mean symmetric

epipolar distance was then computed for all corresponding frames f , via:

dsym =
1

N

N∑
f

d⊥(x′f , Fxf )
2 + d⊥(xf , F

Tx′f )
2, (6)

where d⊥(x, l) returns the perpendicular distance between the point x and the line

l. Table 10 displays the mean symmetric epipolar distance for each experiment.

The results demonstrate that for real video sequences, α and ∆ can be recovered

to acceptable accuracy. Further, if α is known, the accuracy of the recovered frame

offset is improved. It can be seen that the corresponding frames used to recover

α and ∆ in the real video sequences are typically well-spaced. Whilst this is not

required by the algorithm, it improves the accuracy of the least-squares estimation of

α and ∆. The mean symmetric epipolar distance is also shown to be low, indicating
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(a) (b)

Figure 23: Corresponding frames taken from the indoor2 sequences, with the ball’s
trajectory overlaid. The five corresponding frames used for synchronization are
indicated by circles in (a), with the corresponding epipolar lines shown in (b), and
the ball’s position indicated by triangles.

(a) (b)

Figure 24: Corresponding frames taken from the outdoor sequences, zoomed in for
greater detail. The image markings are the same as in Figure 23.

that the supplied trajectory data and the recovered synchronization parameters

satisfy the known epipolar geometry.

It is seen in Figures 23 to 26 that the magnitude of the ball’s inter-frame vertical

velocity is not large. However, it is sufficient for synchronization provided that the

pairs of corresponding frames used for recovering α and ∆ are not located near the

peak of the trajectory, where the magnitude of the vertical velocity is at a minimum.

It is shown that although the ball may be tracked through many frames, few

pairs of corresponding frames are required for synchronization, as demonstrated in

Figures 23 to 26. In the real video sequences used in these experiments, the number

of frames in which the ball was tracked ranged from 22 to 57 frames. These results

confirm that the algorithm, whilst simple, is efficient.
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(a) (b)

Figure 25: Corresponding frames taken from the kick6 sequences. The image
markings are the same as in Figure 23.

(a) (b)

Figure 26: Corresponding frames taken from the kick8 sequences. The image
markings are the same as in Figure 23.

4.4.3 Synchronizing longer real video sequences using the

extended algorithm

In the previous experiments, the videos to be synchronized contained the ball mov-

ing upwards once and then moving downwards once. In Section 4.2.3, an extension

to the algorithm was described that synchronizes longer video sequences containing

multiple vertical motions. In this sub-section, the results of applying this algorithm

to various real video sequences synchronized in Chapter 3 are presented.

Table 11 shows the results of synchronizing these of video sequences. The frame

rate ratio and frame offset recovered by this algorithm are denoted by α̂ and ∆̂,

respectively. Also, the frame rate ratio and frame offset recovered using the algo-

rithm presented in Chapter 3 are provided for comparison purposes and are denoted

by α† and ∆†, respectively. Further, numerical results are also presented for both

algorithms where the frame rate ratio is known, as indicated by “Forced 1” and

“Forced 2”. In these video sequences, the fundamental matrix was estimated from

12 to 16 manually selected points visible in each view and 8 pairs of corresponding

frames were computed. These corresponding frames were contained within various
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Sequence pair ᾱ α̂ α† ∆̄ ∆̂ ∆†

indoor 1 0.9992 1.0000 8.0 8.42 8.50
Forced 1 8.01 8.48

outdoor 1 1.0017 1.0000 738.0 738.14 737.73
Forced 1 738.81 737.74

backyarda 2 2.0025 2.0000 −172.5 −172.05 −172.25
Forced 2 −171.36 −172.24

backyardb 1 0.9985 1.0000 39.5 38.91 39.19
Forced 1 39.29 39.21

Table 11: Using the extended algorithm to synchronize extended video sequences
containing multiple vertical motions. The values α† and ∆† denote respectively the
frame rate ratio and frame offset of the sequences as recovered by the algorithm
described in Chapter 3.

sub-sequences evenly distributed throughout the video sequences.

It can be seen in Table 11 that the values of α̂ and ∆̂ are recovered accurately.

However, the comparison with the values recovered by the algorithm from Chapter 3

indicate that that algorithm provides slightly better accuracy, particularly in the

estimation of the frame rate ratio. It should be noted that, as demonstrated in

Table 7, increasing the number of corresponding frames improves the accuracy

of the algorithm where the trajectory data are affected by noise. As the image

measurements are not expected to be significantly affected by noise, and since the

algorithm from Chapter 3 typically recovers α and ∆ from hundreds of pairs of

corresponding frames rather than the 8 pairs used here, it is expected that the

accuracy of that algorithm is greater than that of this algorithm.

To summarize, the extended algorithm presented in this chapter provides satis-

factory synchronization performance using a fast and simple implementation, but

it is not as accurate as the algorithm described in Chapter 3. In cases where the

fundamental matrix is known, this algorithm could be used as a fast alternative to

the method described in Sections 3.2.6 and 3.3.1 to initialize the 2D search for the

minimum of the 9th singular value in ∆-α space.
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4.5 Discussion

4.5.1 Degenerate cases

There are some situations in which degeneracies may occur in this algorithm due

to the manner in which epipolar geometry is exploited. Firstly, care must be taken

when choosing the frame Si for synchronization. There may be a point on the

trajectory such that the ball’s approximated trajectory t′ in S ′j is parallel to the

epipolar line l′i corresponding to the ball’s location in Si, as shown in Figure 27.

In this case, Step 3 in Section 4.2.1 yields a point p′ at infinity, and there is no

finite solution for the number of frames until the ball crosses the epipolar line. To

resolve this problem, a different frame Sj should be chosen such that the ball has

significant vertical velocity: i.e., its motion is predominantly vertical such that it

is not moving parallel to l′i (as l′i is expected to be more horizontal than vertical),

and the ball is not near the peak of the ballistic trajectory.

Choosing a frame Si where the ball’s location coincides with the epipole will

result in a degeneracy in computing the corresponding epipolar line in the other

view. In this case, another frame Si should be randomly selected.

It is assumed that the vertical separation of the cameras is small relative to

the lateral separation. Hence, when the ball has significant vertical velocity, it is

expected that it will not move parallel to an epipolar line, which is likely to be almost

horizontal. Sometimes, an epipolar line may not intersect with the trajectory due

to errors in estimating F. If this occurs, another frame Si should be chosen where

the ball has significant vertical velocity and hence will not be at the peak of its

trajectory; as a result, l′i will not be tangential to the trajectory.

t’

l’i

x’
x’j+1

j

Figure 27: A degenerate case where the ball’s approximated trajectory is parallel
to the epipolar line. In this case, t′ will intersect l′i at a point at infinity.
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4.5.2 Comparison with an algorithm by Carceroni et al.

As previously mentioned, this algorithm shares similarities with an algorithm by

Carceroni et al. [1] in that both algorithms require weakly calibrated cameras and

epipolar line crossings are used to propose temporally corresponding frames. How-

ever, Carceroni’s algorithm is more general in that it can synchronize multiple video

sequences containing arbitrary object motion. In this section, I address some prob-

lems that may be encountered in using Carceroni’s algorithm to synchronize pairs

of video sequences using the same data that my algorithm uses. It is important to

note that in general use, it is likely that Carceroni’s algorithm would derive extra

tracking data from other moving objects visible in each sequence, rather than a

single object tracked through a sequence.

Firstly, my algorithm differentiates between upwards and downwards motion.

When determining frames in which an object crosses an epipolar line, it is likely

that Carceroni’s algorithm will propose two frame correspondences: one when the

ball crosses the epipolar line and is moving upwards and one when it is moving

downwards. This should not cause any problems when RANSAC is used to recover

the synchronization parameters, since a simple constraint can be enforced to ensure

that the recovered value of α is positive; i.e., it is assumed that time flows forwards

in both sequences. This is demonstrated in Figure 28, where the distributions of

the proposed corresponding frames for the take8 and outdoor sequences are shown;

the set of points in each plot that form a line with a positive gradient correspond to

the correct corresponding frames, and those forming a line with a negative gradient

are due to the incorrect epipolar line crossings.

Previously, it has been stated that my algorithm should only select frames where

the ball has significant vertical velocity, i.e., where the ball’s motion and the cor-

responding epipolar line are not almost parallel. Carceroni’s algorithm does not

enforce such a motion constraint. Errors in estimating the fundamental matrix

may cause the gradient of the epipolar lines to be incorrect, thus affecting the loca-

tion of where an object crosses an epipolar line. As a result, any proposed pairs of

corresponding frames where the ball’s motion is almost parallel to the epipolar line

are sensitive to the accurate estimation of the fundamental matrix. As RANSAC is
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(b) outdoor sequences

Figure 28: Proposed corresponding frames determined via Carceroni’s algorithm
for two pairs of video sequences.

employed to fit the timeline, their algorithm should not be significantly affected by

the inclusion of outliers. However, experiments have identified a potential source of

error introduced by RANSAC.

In Figure 28(b), a significant number of points can be seen that form two almost

horizontal lines at the top of the plot. These points correspond to frames where the

ball’s velocity is almost parallel to the proposed corresponding epipolar lines. As

the outdoor video sequences are short and the number of proposed corresponding

frames is low, these points significantly increase the percentage of outliers. It can

be seen that some of these points lie close to the straight line representing the

synchronization parameters. If a large threshold distance is used by RANSAC to

determine whether a point representing a pair of corresponding frames is an inlier,

these erroneous points will affect the accuracy of the recovered synchronization

parameters. Conversely, if the threshold is too low in order to eliminate these

outliers, RANSAC may fit a straight line to the outlying points representing frames

where the ball’s motion is almost parallel to the epipolar lines, rather than fitting

a line to the points representing actual corresponding frames.

It is noted that Carceroni et al. employ RANSAC to recover the synchronization

parameters. Although it could be argued that RANSAC could also be used in a

similar capacity in place of the least-squares method used in the basic case of my

algorithm described in Section 4.2.3, this is not considered to be necessary when

synchronizing short sequences containing only one ballistic trajectory. Whereas
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Carceroni’s algorithm attempts to find epipolar line crossings that may be due to

any moving object within the video sequence, my algorithm requires a single mov-

ing object to be tracked; as such, any incorrectly proposed corresponding frames

would be due to incorrect computation of the intersection point of the ball’s trajec-

tory with the epipolar line, rather than incorrectly matching inter-frame motions

from different objects. Further, it is expected that my algorithm will locate the

corresponding frames correctly due to the following reasons. In the basic case of

my algorithm, it is assumed that each of the short video sequences contains only

one contiguous set of frames where the ball moves upwards and one contiguous set

of frames where the ball moves downwards. Hence, no ambiguity arises from the

direction of the ball’s motion. If the ball is moving upwards in a frame from S,

the corresponding frame from S ′ must lie within the contiguous set of frames in S ′

where the ball moves upwards. Recall that the initial selection of frames requires

that the ball’s direction of vertical motion is the same in the selected frames of both

sequences. As my algorithm converges as described in Section 4.2.2, the correct cor-

responding frame should be located. Thus, since no outlying pairs of corresponding

frames are expected to be computed, it is not necessary for the basic algorithm to

use a random sampling method to eliminate outliers.

4.6 Conclusion

An algorithm has been presented that uses object motion to recover the ratio of

frame rates and the temporal offset of video sequences recorded by two weakly cal-

ibrated stationary cameras with fixed intrinsic parameters. The basic case of the

algorithm was shown to converge rapidly to locate a pair of corresponding frames

within a pair of short video sequences containing an object undergoing ballistic mo-

tion. This basic case was extended by incorporating the concept of sub-sequences,

introduced in the previous chapter, to allow the algorithm to synchronize pairs of

longer video sequences containing several ballistic motions.

Experiments on synthetic and real data have shown that the algorithm provides
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a simple and fast method of synchronization. The recovered synchronization param-

eters were shown to be accurate via comparison with manual synchronization and an

analysis of the reprojection error of temporally corresponding trajectory locations

using the known epipolar geometry. As expected, as the level of noise affecting the

trajectory coordinates or the stationary background points used to estimate the

fundamental matrix increases, the algorithm’s accuracy decreases gradually and

gracefully. The fundamental matrix plays an important role in my algorithm and

needs to be estimated accurately. The results of synchronizing a number of ex-

tended real sequences have shown that this algorithm can accurately and rapidly

recover the frame rate ratio and frame offset of a pair of video sequences.
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Chapter 5

Synchronization from space-time

interest points

5.1 Introduction

The synchronization algorithms introduced in Chapters 3 and 4 utilized trajectory

information to recover the synchronization parameters. In particular, in Chapter 4,

pairs of temporally corresponding frames were determined via the epipolar con-

straint; from these pairs of frames and Equation (1), the frame rate ratio, α, and

the frame offset, ∆, of the sequences were recovered. In this chapter, an algorithm

is proposed that determines pairs of temporally corresponding frames by finding

corresponding space-time interest points from each video sequence. The algorithm

synchronizes pairs of video sequences without requiring camera calibration or object

tracking. Space-time interest points, as introduced by Laptev [20,22], are locations

in video sequences where a significant change in pixel intensity exists both spatially,

i.e., within a frame of a sequence, and temporally, i.e., between consecutive frames

of a sequence. Such interest points are commonly detected where events, such as

objects merging, splitting, or changing direction, occur. Space-time interest points

are presented in more detail in Section 5.2.

There has been little previous work in using space-time interest points for video

sequence synchronization. As mentioned in Chapter 2, Yan and Pollefeys [53] recov-

ered the frame offset of a pair of video sequences by cross-correlating the temporal

83



84 CHAPTER 5. SYNC. FROM SPACE-TIME INTEREST POINTS

distribution of space-time interest points at each integer frame offset; the frame

offset yielding the greatest correlation score was returned as the recovered frame

offset. This process did not determine pairs of corresponding space-time interest

points from each sequence; rather, it assumed that an event that was visible in both

sequences resulted in a similar number of space-time interest points being detected

in each sequence.

Laptev et al. [21] employed space-time interest points for detecting periodic

motion within a single sequence. Firstly, pairs of space-time interest points that

were proposed to be periodically equivalent were determined. That is, the interest

points that were matched were due to the same event occurring in different periods

of the periodic motion. Each pair of points were separated temporally by some

time offset ∆; for points that were in fact periodically equivalent, ∆ was a multiple

of the period length. Then, a RANSAC-based approach was used to recover pairs

of periodically equivalent points. At each RANSAC iteration, two pairs of space-

time interest points with similar ∆ values were selected and a reduced fundamental

matrix was estimated; the number of inliers was the number of pairs of points that

supported the proposed value of ∆ and the proposed reduced fundamental matrix.

A property of the reduced form of the fundamental matrix introduced by Laptev

et al. is that periodically equivalent interest points lie on the same epipolar line.

Thus, the epipolar lines coincide with the direction of the periodic motion.

In this chapter, an algorithm is presented that synchronizes two sequences

recorded by stationary cameras with fixed intrinsic parameters. Neither weak cam-

era calibration nor object tracking are required. Firstly, space-time interest points

are detected in each sequence, and putatively matching interest points from each

sequence are proposed. Next, a two step nested RANSAC approach firstly proposes

a temporal model, i.e., the synchronization parameters α and ∆, that relates the

two sequences. Then, the best spatial model, defined as either a homography for

sequences containing planar motion or a fundamental matrix for sequences contain-

ing free object motion in 3D space, is recovered for the proposed temporal model.

A special case of the algorithm is also presented for use when the spatial model is

known. In this case, a single instance of RANSAC is used to recover the temporal



5.2. SPACE-TIME INTEREST POINTS 85

model only.

This algorithm is similar to the periodic motion detection algorithm by Laptev

et al. [21] in that a temporal model is proposed first and a spatial model is then

fitted to the putative matches that satisfy the proposed temporal model. How-

ever, whereas Laptev’s algorithm searches for constant-rate periodic motion within

the same video sequence, my algorithm synchronizes two views of the same event

recorded at different frame rates. A more detailed comparison is provided in Sec-

tion 5.7.2.

The structure of this chapter is as follows. Firstly, space-time interest points

are introduced. Then, three interest point descriptors are described, two utilizing

the widely used SIFT descriptor, and the third based on the local N-jet which is

computed from derivatives of the space-time volume; local N -jets are introduced

in Section 5.3.1. Next, a method of determining putatively matching space-time

interest points points is outlined. The algorithm that recovers the spatial and

temporal models relating the two sequences is then presented, and results given for

using all descriptors for synchronizing pairs of sequences containing either motion on

a plane or free motion in 3D space. Finally, the ordering of the two RANSAC steps

in the algorithm is discussed, and comparisons with the aforementioned algorithms

by Yan and Pollefeys, and Laptev et al. are presented.

5.2 Space-time interest points

Space-time interest points, introduced by Laptev [20,22], are locations in greyscale

video sequences where a large variation in pixel intensities exists in space (within

each frame) and time (between frames). They may be considered to be the equiv-

alent in video sequences of spatial interest points in still images, e.g., Harris cor-

ners [12]. Interest points may be detected where a variety of events occur, such as

where and when an object appears to change direction, where objects appear to

merge or separate, or where an object is occluded or dis-occluded. It is likely that

interest points detected due to occlusion and dis-occlusion events in one sequence

would either appear at a different time and location in the other sequence, or not
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at all. However, it is expected that the following steps of determining putatively

matching space-time interest points from each sequence and then rejecting outly-

ing putative matches via RANSAC will ensure that these events do not affect the

synchronization process.

To detect space-time interest points, a second moment matrix, M, is constructed

for each pixel location (x, y) in each frame t of a sequence S:

M =


L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , (7)

where Lu, the first order derivative in the u dimension of the video sequence, is

computed via:

Lu(x, y, t; σ2, τ 2) =
∂

∂u
(g(x, y, t; σ2, τ 2) ∗ S), (8)

and g(x, y, t; σ2, τ 2) is a separable Gaussian kernel, given by:

g(x, y, t; σ2, τ 2) =
exp(−(x2 + y2)/(2σ2)− t2/(2τ 2))√

(2π)3σ4τ 2
, (9)

where ∗ denotes convolution and σ2 and τ 2 denote the independent spatial and

temporal variances, respectively. Then, space-time interest points are located at

positive local maxima of the corner function H, where:

H = det(M)− k tr3(M). (10)

Laptev suggests using k ≈ 0.005. The positive local maxima of H correspond to

(x, y, t) locations within the video sequence where the three eigenvalues of M are

significant. The eigenvalues of M do not need to be explicitly calculated, since H

can be computed directly from the elements of M. However, the eigenvalues, λ1, λ2,

and λ3, are implied in the computation of the determinant and trace of M which are

contained within H due to Equation (10), since [11]:

det(M) = λ1λ2λ3, (11)

and

tr(M) = λ1 + λ2 + λ3. (12)
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(a) Frame 181 (b) Frame 183

(c) Frame 185 (d) Frame 187 (e) Frame 189

Figure 29: An example of the location of a space-time interest point, identified by
the circle in (c), within a series of frames of a video sequence.

Let xi = (xi, yi, ti)
T denote a space-time interest point in the space-time volume

where (xi, yi) is the pixel location of the interest point in frame ti of the video

sequence.

Figure 29 shows a space-time interest point detected within a video sequence. It

may be convenient to firstly consider that 2D spatial interest point detectors often

locate features at the corners of objects. In this example, consider the set of video

frames as a 3D image volume. The frames displayed show the subject performing

a star jump on a grassy surface. As time passes, the grassed area visible between

the person’s legs expands from a narrow triangle in frame 181 to a wider triangle in

frame 185, before becoming slightly narrower. Simultaneously, this triangle moves

upwards between frame 181 and 185, and then moves downwards after the peak of

the jump. In the image volume, these triangles would form a pyramid-like shape,

with the interest point detected at the apex of the pyramid, which is a corner in

3D space.
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5.3 Interest point descriptors

In this section, three types of interest point descriptors are outlined. A descriptor

derived from the local N -jet is introduced first, followed by the SIFT descriptor and

another proposed SIFT-based descriptor. A descriptor is required to be computed

for every space-time interest point in each sequence. The synchronization algorithm

is not dependent on the selection of the descriptor type but the same descriptor

class must be computed for each point in each sequence. In the following section,

putatively matching space-time interest points from each sequence are proposed by

matching these descriptors.

5.3.1 The local jet descriptor

Consider the spatio-temporal pixel intensity information contained within the video

sequence as a 3D volume. Then, the intensity values in the local volume surround-

ing a space-time interest point can be approximated via the Taylor series. The

coefficients of the truncated Taylor series of degree N , i.e., the partial derivatives

of the volume of up to and including order N , at the location of the space-time

interest point are known as the local N-jet. Koenderink and van Doorn provide a

discussion of the physical interpretations of the derivatives of various orders where

local N -jets are used in the spatial domain [16].

Laptev and Lindeberg demonstrated that local 4-jets, i.e., the 34 partial deriva-

tives of the image volume up to and including the fourth order, can be used to

describe space-time interest points for the process of determining matching space-

time interest points from different video sequences [23]. For practical purposes, the

local 4-jet is represented as a 34-vector, j, where:

j = [Lx, Ly, Lt, Lxx, Lxy, Lxt, Lyy, Lyt, Ltt,

Lxxx, Lxxy, Lxxt, Lxyy, Lxyt, Lxtt, Lyyy, Lyyt, Lytt, Lttt,

Lxxxx, Lxxxy, Lxxxt, Lxxyy, Lxxyt, Lxxtt, Lxyyy, Lxyyt, Lxytt, Lxttt,

Lyyyy, Lyyyt, Lyytt, Lyttt, Ltttt].

An extension to the local 4-jet was proposed by Laptev and Lindeberg [23],
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who described a method of incorporating local 4-jets computed over multiple spa-

tial and temporal scales into a single descriptor. For a space-time interest point

detected with spatial and temporal scales σ0 and τ0 respectively, local 4-jets were

computed for each combination of σ and τ values, where σ ∈ {σ0/2, σ0, 2σ0} and

τ ∈ {τ0/2, τ0, 2τ0}. As each local 4-jet consists of 34 elements and there are 9 spatio-

temporal scale combinations, the multi-scale local 4-jet descriptor is a 306-vector.

As I only use the multi-scale local 4-jet in the following sections, the term local jet

is used to refer to the 306-element multi-scale local 4-jet descriptor described here.

5.3.2 The SIFT descriptor

The widely used scale-invariant feature transform (SIFT) descriptor, developed by

Lowe [26], is a 128-vector computed from the histograms of pixel intensity gradients

in still images. The descriptors are invariant to rotation and changes in scale,

and robust to a change in viewpoints. Previously, the SIFT descriptor has been

successfully used for representing regions in still images. In this algorithm, it is

used as an alternative descriptor for finding putatively matching space-time interest

points. Since a SIFT descriptor is computed from spatial information from only

one frame of a video sequence, it contrasts significantly with the local jet that is

computed from spatio-temporal information.

To compute the SIFT descriptor for a given space-time interest point detected

in frame ti of a video sequence, the affine invariant region is first computed around

the (xi, yi) location of the space-time interest point in that frame. This region is a

window surrounding the interest point such that the second moment matrix of the

region is isotropic, i.e., the magnitudes of the minimum and maximum eigenvalues

of the second moment matrix are equal. Further details on affine invariant regions

are provided by Mikolajczyk and Schmid [27].

Once the affine invariant region has been computed, the next step is to compute

the SIFT descriptor for that region in frame ti. The orientations of the gradients at

each sample point surrounding the location of the centre of the affine invariant region

are incorporated into orientation histograms, from which the descriptor vector is

computed. Lowe provides further details on how to compute SIFT descriptors [26].
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Sometimes, the location of an affine invariant region may not coincide exactly

with the spatial location of a space-time interest point. When this occurs, the SIFT

descriptor is computed for the affine invariant region closest to the detected space-

time interest point in the frame where that interest point is detected. A threshold

distance of 3 pixels between the location of the space-time interest point and its

corresponding SIFT descriptor is enforced; if no affine invariant region exists within

this distance, the space-time interest point is discarded. As SIFT descriptors are

computed only for the affine invariant regions within a frame, the locations of space-

time interest points with SIFT descriptors coincide with the locations of spatial

interest points.

5.3.3 The 3SIFT descriptor

A significant difference between the local jet and the SIFT descriptor is that the

former is computed from space-time pixel intensity information whereas the latter

incorporates pixel data from only a single frame. I propose that the previously de-

scribed process for computing a SIFT descriptor for each space-time interest point

be extended by using multiple frames of a video sequence to yield a descriptor

that incorporates temporal data. Where locations within an image with matching

SIFT descriptors must have a similar visual appearance up to an affine transfor-

mation, matching features represented by the proposed SIFT descriptor computed

over multiple frames must also have similar appearances at the spatial location

of the detected interest point in frames before and after the frame containing the

space-time feature.

As in the previous sub-section, an affine invariant region is computed around the

location in frame ti of the video sequence containing the space-time interest point.

Then, SIFT descriptors are computed for this region in frames {ti − 2, ti, ti + 2} of

the video sequence. These 128-element SIFT descriptor vectors are concatenated to

produce a single 384-element descriptor vector. It is noted that the affine invariant

regions in frames ti − 2 and ti + 2 are not necessarily located at a space-time

interest point or even at a spatial interest point. However these regions should have

a similar visual appearance in corresponding frames from each sequence and hence
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should have similar SIFT descriptor vectors.

In order to differentiate between the SIFT descriptor described in the previous

section and the SIFT-based descriptor computed for multiple frames described here,

henceforth, the term SIFT descriptor shall refer to a SIFT descriptor computed from

a single frame of a video sequence, and 3SIFT descriptor will be used to denote a

descriptor computed from multiple frames via the method described in this section.

5.4 Determining putative matches

Putatively matching space-time interest point pairs are proposed from the descriptor

vectors for each interest point by firstly computing a distance measure for every pair

of space-time interest points, and then determining putative matches from these

distances. Given that we now have

SSTIP = {xi = (xi, yi, ti) | ti > 0, 1 ≤ i ≤ N}

and

S ′
STIP = {x′j = (x′j, y

′
j, t

′
j) | t′j > 0, 1 ≤ j ≤ N ′},

i.e., a set of N and N ′ space-time interest points detected in video sequences 1 and

2 respectively, the goal is to establish a set of putative matches, P , from SSTIP and

S ′
STIP via the following steps:

1. Initialize the set of putative matches, P , to an empty set: P ← ∅.

2. For each pairing of points, xi ∈ SSTIP and x′j ∈ S ′
STIP , the corresponding

descriptor vectors are normalized to unit vectors and their Euclidean distance,

dij, is computed. The normalization procedure is used to achieve invariance

in contrast between the two frames of the video sequences. Apart from the

Euclidean distance function adopted here, other distance measures can also

be used; a discussion of measures suitable for use with multi-scale local jets

can be found in Laptev and Lindeberg’s paper [23].

3. The algorithm greedily selects the pair of putatively matching space-time

interest points with the lowest distance score dij. Let the two putatively

matching points be denoted by xi and x′j.



92 CHAPTER 5. SYNC. FROM SPACE-TIME INTEREST POINTS

4. • If local jets are the descriptor vectors selected to represent the space-time

interest points, the pair of points xi and x′j are declared as a putative

match. The set of putative matches, P , is then updated via:

P ← P ∪ {(xi,x
′
j)}. (13)

• If the distance measure dij is computed from SIFT or 3SIFT descriptors,

a stronger condition on matching can be achieved by enforcing Lowe’s

suggestion [26] that the ratio of the distance of the closest matching point

to the second-closest matching point should be no more than 0.8. More

specifically, for xi, the second best distance score, dik, corresponding to

the point x′k ∈ S ′
STIP , is determined; for x′j, the second best distance

score, dhj, corresponding to the point xh ∈ SSTIP , is also computed.

Then, if both dij/dik < 0.8 and dij/dhj < 0.8, xi and x′j are said to be a

putative match and P is updated as in Equation (13).

It is noted that if 3SIFT descriptors are used, this ratio constraint applies

to the entire 384-element 3SIFT vector. Although the 3SIFT descriptor

consists of three 128-element SIFT descriptors and the ratio constraint

could be applied independently to each 128-element component, this is

not enforced in practice.

5. To enforce a one-to-one mapping and to prevent the matching process from

entering an infinite loop, all remaining pairs of interest points containing either

xi or x′j are removed from further consideration, via:

SSTIP ← SSTIP\{xi}

and

S ′
STIP ← S ′

STIP\{x′j}

Then, the process repeats from Step 3, using the reduced sets SSTIP and

S ′
STIP , until either SSTIP = ∅ or S ′

STIP = ∅.
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5.5 Recovering the synchronization

RANSAC [9] is a random sampling method for fitting a model to a data set contain-

ing outliers. The synchronization algorithm that I present here employs RANSAC

to recover the temporal model from the set of putatively matching space-time inter-

est points, P . Firstly, I outline the general case of the algorithm where neither the

temporal nor the spatial models are known; in this case, the algorithm estimates

both models via two nested instances of RANSAC. Secondly, in some applications

such as video surveillance, the cameras may be permanently mounted and the spa-

tial model, either a homography or a fundamental matrix, may be known. For these

applications, I describe a special case of the algorithm that exploits the known spa-

tial model to improve the putative matches and then uses only a single instance of

RANSAC to recover the synchronization parameters.

5.5.1 Recovering the spatial and temporal models

To recover the temporal and spatial models that relate two video sequences, my

algorithm uses two nested instances of RANSAC. The first, outer instance recovers

the temporal model, i.e., the synchronization parameters α and ∆. The inner

instance estimates the spatial model, either a homography or a fundamental matrix

for sequences containing planar motion and free motion in 3D space, respectively.

The structure of the standard RANSAC algorithm is displayed in Figure 30, and

is contrasted with Figure 31 which outlines the nested approach presented in this

algorithm. It can be seen that the step in which inliers are computed in the standard

RANSAC algorithm is replaced in my algorithm by another complete instance of

RANSAC. My algorithm is described in detail below:

1. Two pairs of putative matches are randomly selected from the set of putative

matches, P . Let the temporal components of one pair of putatively matching

space-time interest points be denoted by ti and t′j, and let the temporal com-

ponents of the other pair of putatively matching space-time interest points be

denoted by tk and t′l. Then for each putative match, temporal component pairs

are constructed representing the two interest points’ temporal components in
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YES
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Figure 30: A generic RANSAC framework used to recover a single model. N is the
number of samples to try, based on the probability that at least one sample is free
of outliers, the probability that a data point is an inlier, and the size of the sample
set. Hartley and Zisserman provide further details on computing N adaptively [13].

a 2D space, i.e., (ti, t
′
j) and (tk, t

′
l). An example of the temporal component

pairs for all putative matches is displayed in Figure 32(a). Next, a straight

line is fitted to these two temporal component pairs. This straight line is the

temporal model as it encapsulates the synchronization parameters α and ∆

in the line’s gradient and y-intercept, respectively, via Equation (1).

2. Next, the inliers for the temporal model are determined. Putative matches

whose temporal component pairs lie within a threshold perpendicular distance

from the straight line proposed in the previous step are temporal inliers as

their temporal components are consistent with the values of α and ∆. Fig-

ure 32(b) provides an example of fitting a temporal model to a set of temporal

component pairs and determining temporal inliers. A strict distance thresh-

old should be employed as we are searching for putative matches that rigidly
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Figure 31: The nested RANSAC framework used by this algorithm. This varies
from the framework displayed in Figure 30 in that the secondary RANSAC step
contained within the dashed box replaces the step in which inliers are counted.

satisfy the proposed temporal model, rather than a line of best fit through

all temporal component pairs. The temporal inliers are used as the input to

the inner instance of RANSAC which estimates the spatial model in the next

step.
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3. Using the spatial components of the temporal inliers, a RANSAC step is used

to fit the spatial model, either a homography fitted from 4 temporally inliers or

a fundamental matrix from 8 temporal inliers if the linear method is used [13].

The class of spatial model is dependent on the type of motion contained within

the video sequences. In this step, RANSAC may propose many spatial models

for the proposed temporal model; the model resulting in the most inliers is

selected. As the spatial model is fitted to the temporal inliers, the inliers to

the recovered spatial model are spatio-temporal inliers. It is noted that not all

temporal inliers are spatio-temporal inliers, as demonstrated in Figures 32(c),

(d) and (e).

4. Once the inner RANSAC step has recovered the best spatial model cor-

responding to the temporal model proposed in this iteration, the number

of spatio-temporal inliers is used as the support for the proposed temporal

model. Then, the estimated number of iterations required to recover the tem-

poral model is then updated adaptively, based on the probability of finding

an outlier-free sample and the maximum support for all proposed temporal

models [13]. If insufficient iterations have been completed, the algorithm then

repeats from Step 1. Otherwise, the temporal model and the corresponding

spatial model with the most spatio-temporal inliers are returned.

It may not appear to be necessary to compute the spatial model. However,

enforcing the spatio-temporal inliers to satisfy both the temporal and spatial models

provides another step for rejecting outliers. Sometimes, as shown in Figure 32(b),

there may be many temporal outliers. If the spatial model was not considered in

this algorithm, the synchronization process would be reduced to using RANSAC

to fit a straight line to the temporal component pairs, with the line encapsulating

the synchronization parameters. It should be emphasized that this process would

fit a straight line to the set of inliers as determined by RANSAC, rather than

computing a line of best fit through all temporal inliers. If no spatial model was

recovered, it is possible that RANSAC may find an incorrect solution where the

recovered straight line representing the temporal model has more inliers than the
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Figure 32: The process of determining spatio-temporal inliers from putative
matches. (a) Firstly, temporal component pairs are constructed for all putative
matches. Some putative matches occur in the same frames in each sequence; due
to display limitations, such matches are represented by a single data point. (b) A
straight line is fitted to two randomly selected temporal component pairs, and the
temporal inliers determined. Here, the correct temporal model has been fitted. (c)
The temporal inliers are used to fit a spatial model, from which spatio-temporal
inliers, a subset of the temporal inliers, are determined. The spatial components
of these temporal inliers are overlaid on a frame taken from each sequence and
displayed in (d) and (e).

line representing the actual synchronization parameters; however, it is unlikely that

the spatial components of all of the temporal inliers would form a consistent spatial

model.
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5.5.2 A special case: recovering only the temporal model

In some applications, the spatial model relating the two video sequences may be

known and so it would not be necessary to recover the spatial model via the above

process. Here, I present a special case of the above algorithm for recovering only

the temporal model. The known spatial model is used to improve the process of

determining putative matches:

1. Firstly, the process of determining putative matches is modified to exploit the

information provided by the spatial model. To compute the set of putative

matches, P , the Euclidean distance between interest point descriptors is cal-

culated for every pair of space-time interest points as described in Step 2 of

Section 5.4. However, if for a given pair of interest points, xi and x′j, the

reprojection error due to the known homography or fundamental matrix is

above a specified threshold distance, the pair of points xi and x′j is immedi-

ately rejected from being a potential putative match. The putative matches

are then computed from the remaining pairs of space-time interest points via

the remainder of the procedure as described previously in Section 5.4.

2. Next, the temporal component pairs in 2D space are constructed from the

temporal components of the putative matches. Then, RANSAC is applied to

recover the synchronization parameters from these temporal component pairs.

At each iteration, two temporal component pairs are randomly selected and

a straight line representing the synchronization parameters is fitted to these

points. The inliers to the resulting proposed synchronization parameters are

then determined. This is the same process used to determine a temporal

model in Step 1 of the previous sub-section. As the spatial components of the

putative matches satisfy the known spatial model and the recovered temporal

model, the inliers to the proposed synchronization parameters are spatio-

temporal inliers.

Since the putative matches must satisfy the known spatial model, the special

case presented in this sub-section essentially reduces the synchronization problem
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to the simple problem of fitting a straight line to the temporal components of the

inlying putative matches.

5.6 Results

The algorithm was tested on pairs of real video sequences recorded by stationary

cameras with fixed internal parameters. In the series of sequences denoted shadow

in the following tables, the shadow of a moving person was projected onto a tex-

tured planar surface; a homography relating the two views and the temporal model

were recovered. On the other hand, the park sequences contained free 3D motion,

hence a fundamental matrix was recovered in place of a homography. The pair

of sequences labelled star also contained free motion in 3D space where a person

moved within the scene and performed star jumps in various locations. The mo-

tion in this sequence was closer to the camera in this sequence than in the park

sequences.

The resolution of the input video sequences was 200 × 150 pixels. The origi-

nal resolution of each sequence was 640 × 480 pixels, however as the detection of

space-time interest points is expensive in terms of computation time and memory

requirements, the sequences were resampled to 200 × 150 pixels using bicubic in-

terpolation. The videos contained only greyscale pixel data. Each sequence was

between 125 and 540 frames in length, and each video was recorded at 15 or 30

frames per second, hence the frame rate ratio for each sequence pair was known

exactly.

5.6.1 Free parameters

My algorithm and the experiments I conducted involved setting a number of free

parameters. These parameters are outlined and their values are given below:

• In each sequence, the 200 most significant space-time interest points were

detected, i.e., the space-time locations of the 200 strongest local maxima of

the measure H, given in Equation (10), were used.
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• For all sequences, the temporal variance τ 2 was set to 2. The spatial variance

differed between sequences. For the shadow sequences, the spatial variance

was σ2 = 2. For the park and star sequences, σ2 = 4. The estimated spatio-

temporal extents of features occurring in the recorded video sequences were

used to set the above variances.

• In determining the inliers for the temporal model, a threshold distance of 1

frame was used by RANSAC. This threshold is low in the context of fitting

a straight line to a set of 2D points, however, it is important that the tem-

poral component pairs of inlying putative matches closely correspond to the

proposed synchronization parameters.

• When computing SIFT and 3SIFT descriptors for space-time interest points,

the centre of the affine invariant region was enforced to be within 3 pixels

of the space-time interest point for which the SIFT or 3SIFT descriptor was

computed, as stated in Section 5.3.2.

• In the special case of the algorithm, the reprojection error threshold used

when applying the known spatial model to determine putative matches was 4

pixels.

In this section, I firstly present results for the general case of the algorithm, i.e.,

where both the temporal and spatial models are recovered, using each of the three

interest point descriptors. A comparison is also presented where video sequences

containing planar motion are synchronized firstly using the general case of the

algorithm where the ground plane homography relating the sequences is unknown,

and secondly where the homography is estimated manually and the special case of

the algorithm is used to recover the temporal model.

5.6.2 Results using local jet descriptors

The results for using the multi-scale local jet descriptors to determine putatively

matching space-time interest points are given in Table 12. A symmetric transfer

error measure is provided for the shadow sequences listed in this and later results

tables. This error, in units of pixels2, was calculated by firstly estimating the
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ground plane homography from 14 manually selected significant features visible in

each sequence, and then computing the mean symmetric transfer error of inlying

pairs of space-time interest points. Equation (14) describes the computation of the

transfer error:

dtrans =
1

N

N∑
i

d(xi, H
−1x′i)

2 + d(x′i + Hxi)
2, (14)

where d(a,b) denotes the distance between the points a and b.

These experiments confirm that this algorithm provides results comparable to

manually synchronizing video sequences. It is noted that the algorithm failed to

synchronize the park8 sequences, though this was not due to the sequences having

different frame rates; the shadow10 and star sequences both had a non-unity ratio

of frame rates and were successfully synchronized.

Figure 33 shows synchronized frames taken from each view of pairs of sequences

containing planar motion. For each sequence pair, the frame recorded by the first

camera has been rectified using the recovered homography such that it appears to

have been viewed by the second camera. This visual comparison also demonstrates

that the recovered homography is accurate. In Figure 34, synchronized frames from

pairs of sequences containing free motion are shown. The epipolar geometry has

been recovered from the space-time features whose spatial components are illus-

trated in each view; epipolar lines corresponding to these points are overlaid in

the other frame from each sequence. In one view of each sequence pair, the other

camera is visible, and the recovered epipole is located close to the imaged location

of the camera, indicating that the recovered epipolar geometry is satisfactory.

5.6.3 Results using SIFT descriptors

Table 13 lists the results of synchronizing the pairs of video sequences where the

putative matches were proposed by matching SIFT descriptors representing each

space-time interest point. The algorithm failed to synchronize any of the park video

sequences when SIFT descriptors were used to represent space-time interest points;

these results are not displayed in the table. A possible cause for this failure is the

poor localisation of the SIFT descriptors, although this was not a problem in the
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Sequence pair ᾱ α̂ ∆̄ ∆̂ Transfer error

shadow6 1 0.9973 0.0 0.7116 2.0780
shadow7 1 0.9978 0.0 0.0490 3.9459
shadow8 1 0.9961 0.0 0.4071 10.8315
shadow9 1 1.0004 0.0 0.3330 22.8190
shadow10 0.5 0.5004 94.0 93.5359 18.1046
park1 1 0.9999 −10.0 −9.8060
park2 1 1.0021 0.0 −0.3130
park3 1 0.9978 0.0 0.4293
park4 1 1.0009 0.0 0.1401
park5 1 1.0019 0.0 −0.3589
park6 1 0.9987 0.0 −0.4379
park7 1 1.0025 0.0 −0.4855
park8 0.5 Failed 0.0 Failed N/A
park9 1 1.0001 24.5 23.7990
park10 1 1.0029 13.0 12.6256
park11 1 0.9938 16.0 17.8868
park12 1 0.9989 105.5 105.8763
park13 1 1.0047 60.5 59.9576
park14 1 0.9990 36.5 37.3511
park15 1 1.0006 −29.5 −29.2951
star 2 2.0026 0.0 0.1069 N/A

Table 12: The results of synchronizing the real video sequences where putative
matches were computed from local jet descriptors. The “Transfer error” column
denotes the symmetric transfer error of the spatial components of pairs of space-time
interest points computed using a homography estimated from manually selected
points; the error is in units of pixels2.

shadow sequences. It was previously mentioned that a SIFT descriptor must be

computed at a location within some threshold distance of the space-time interest

point; Table 14 demonstrates that most space-time interest points satisfied this

requirement. The failure may also have been due to the motion occurring in 3D

space where the stationary background was much further away from the camera

than the foreground motion. In this situation, corresponding space-time interest

points from each sequence that were detected on the boundary of a foreground

object may appear to have significantly different backgrounds, particularly when

the cameras were widely separated. Hence, the descriptors of such points may vary

considerably and as such, reliable matching may not be possible.

Removing Lowe’s restriction on putative matches resulted in far more putative
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(a) shadow7 view 1 (b) shadow9 view 1

(c) shadow7 view 2 (d) shadow9 view 2

(e) shadow7 rectified view 1 (f) shadow9 rectified view 1

Figure 33: The result of synchronizing sequences containing planar motion. The
pair of images (a) and (c) were recorded at the same instant in time, as were the
images (b) and (d). The rectified views shown in (e) and (f) are the result of apply-
ing the recovered homography to the images in (a) and (b) such that those images
appear to have been viewed from the same viewpoints as (c) and (d) respectively.

matches being declared but did not improve the synchronization process.

5.6.4 Results using 3SIFT descriptors

As with the single-frame SIFT descriptors, determining putative matches via match-

ing 3SIFT descriptors was successful in the planar motion case but was unsuccessful

in synchronizing the video sequences containing free motion in 3D space.

As the 3SIFT descriptors were computed for the same affine invariant regions

at which the SIFT descriptors were computed, the number of 3SIFT descriptors
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Figure 34: The result of synchronizing sequences containing free object motion. In
each image, the spatial locations of inlying space-time interest points are displayed,
and epipolar lines are overlaid corresponding to the spatial locations of inlying
space-time interest points in the other sequence. In (c) and (d), the camera that
captured frames (a) and (b) can be seen atop a tripod; the recovered epipole is close
to the actual camera location. The pair of images (a) and (c) were recorded at the
same instant in time, as were the images (b) and (d).

Sequence pair ᾱ α̂ ∆̄ ∆̂ Transfer error

shadow6 1 0.9984 0.0 0.6269 15.1876
shadow7 1 1.0026 0.0 −0.3454 4.0933
shadow8 1 1.0054 0.0 −0.1292 17.0871
shadow9 1 1.0010 0.0 0.5776 21.7699
shadow10 0.5 0.4983 94.0 94.3035 10.6653

star 2 2.0001 0.0 0.3189 N/A

Table 13: The results of synchronizing real video sequences where putative matches
were computed from SIFT descriptors.

computed for each sequence was the same as the number of SIFT descriptors.

When comparing the number of outliers, temporal inliers, and spatio-temporal

inliers for each sequence pair, it was noticed that there was no significant advantage

in using the 3SIFT descriptor. As expected, where the frame rates of the sequences
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Sequence Number of SIFTs computed SIFTs computed
pair interest points in Sequence 1 in Sequence 2

shadow6 200 171 175
shadow7 200 179 168
shadow8 200 174 171
shadow9 200 170 167
shadow10 200 169 176
park1 200 145 174
park2 200 140 172
park3 200 130 174
park4 200 133 125
park5 200 160 183
park6 200 124 183
park7 200 124 166
park8 200 136 140
park9 200 169 145
park10 200 186 112
park11 200 140 119
park12 200 145 179
park13 200 160 163
park14 200 152 153
park15 200 166 172
star 200 200 196

Table 14: The number of space-time interest points computed for each sequence are
shown along with the number of corresponding SIFT descriptors that were able to
be computed for those interest points.

were the same, the 3SIFT descriptor performed no worse than the SIFT descriptors;

unfortunately, the 3SIFT descriptor did not perform significantly better than the

SIFT descriptor. Further, using the 3SIFT descriptor could cause problems in

sequences where α 6= 1 as the interval between frames used in computing each

3SIFT descriptor is constant; recall that in Section 5.3.3, for a space-time interest

point in frame ti of a sequence, the 3SIFT descriptor was computed from frames

{ti − 2, ti, ti + 2} of the sequence. Ideally, frames {ti − a, ti, ti + a} would be used

to compute the 3SIFT descriptor, where a is proportional to the frame rate of the

sequence, but of course this is not possible if the frame rate ratio is unknown.
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Sequence pair ᾱ α̂ ∆̄ ∆̂ Transfer error

shadow6 1 1.0033 0.0 −0.1437 10.8505
shadow7 1 1.0006 0.0 −0.3270 8.5310
shadow8 1 1.0009 0.0 0.1173 8.6287
shadow9 1 1.0016 0.0 −0.0291 10.3017
shadow10 0.5 0.5012 94.0 93.2718 7.9029

star 2 2.0001 0.0 0.3189 N/A

Table 15: The results of synchronizing the real video sequences where putative
matches were computed from 3SIFT descriptors.

5.6.5 Summary of results for the general case

In Figure 35, the classification of temporal component pairs into outliers, temporal

inliers, and spatio-temporal inliers are shown for the shadow and park sequences

that are shown in Figures 33 and 34 respectively. Results for using both the local jet

and 3SIFT descriptors are displayed for the shadow sequences; only the results of

using the local jets are shown for the park sequences since these sequences were not

successfully synchronized when using the 3SIFT descriptors. In the cases where the

number of temporal inliers is not displayed, all temporal inliers are spatio-temporal

inliers. From these figures, it can be seen that the percentage of inliers is relatively

low. Normally, one would expect that it would not be possible to fit a model to a

data set with such a low percentage of inliers. It is thought that because the general

case of this algorithm employs two independent constraints to determine inliers, the

percentage of inliers can be much lower than would normally be required to recover

a model via RANSAC.

It is also noted that using the 3SIFT descriptors results in significantly fewer

putative matches than using the multi-scale local jet descriptors. This is due to

enforcing Lowe’s recommendation that the ratio of the Euclidean distances between

the SIFT descriptors of the best matching interest point and the second best match

should be less than 0.8, as described in Section 5.4. Hence, this process results in

only strong matches being declared as putative matches. Conversely, not applying

this constraint when determining putative matches using the multi-scale local jet

descriptors means that there may be many putative matches with poor distance

scores.
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(a) shadow7 local jet
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(b) shadow7 3SIFT
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(c) shadow9 local jet
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(d) shadow9 3SIFT
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(e) park9 local jet
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(f) park10 local jet

Figure 35: The classification of putative matches into outliers, temporal inliers, and
spatio-temporal inliers for various pairs of video sequences. The putative matches
were computed by comparing the specified descriptors for each interest point.

The results show that the general case of this algorithm is successful in accurately

recovering the temporal model and either a homography induced by a plane or a

fundamental matrix relating the two views. I expect that the localization of the

epipoles as shown in Figures 34(c) and (d) would be improved if the fundamental

matrix was estimated from features more evenly distributed spatially throughout
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the frames.

It is noted that the symmetric transfer error of putatively matching space-time

interest points is large relative to the resolution of the video sequences. Previously,

Kovesi noted that the localisation of some features returned by the Harris corner

detector may be affected by the Gaussian smoothing operation [18]. As the process

of detecting space-time interest points is similar to that of the Harris corner de-

tector [12], similar localisation issues may arise from the use of space-time interest

points.

The time taken to synchronize the shadow6 to shadow8 sequences using a MAT-

LAB implementation of this algorithm averaged between 4 and 5 minutes per pair

of sequences on a 3GHz Pentium IV machine with 1GB of RAM. These sequences

contained between 125 and 150 frames. The detection of the space-time interest

points consumed approximately 94% of the computation time.

5.6.6 Results of synchronization where the spatial model is

known

In Section 5.5.1, an algorithm was outlined for synchronizing sequences where nei-

ther the temporal nor the spatial models are known. Alternatively, in cases where

the spatial model is known, the special case described in Section 5.5.2 can be used to

exploit this information and improve the putative matching process. Experiments

were conducted using each method to synchronize the shadow sequences containing

planar motion. The homography relating the two views was estimated by manu-

ally selecting 14 significant features on the ground plane common to each view; the

same homographies were used to compute the reprojection errors in the previous

subsections.

In Table 16, it is shown that prior knowledge of the spatial model significantly

improves the quality of the set of putative matches. As all putative matches satisfy

the supplied spatial model and are spatial inliers, the classification of putative

matches into inliers and outliers as displayed in the table is due to the temporal

model. It is noted that the total number of putative matches (the sum of the inliers
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Sequence Homography unknown Homography known
name Inliers Outliers Inliers Outliers

shadow6 16 181 60 54
shadow7 19 174 73 58
shadow8 15 181 49 77
shadow9 12 185 39 56
shadow10 6 187 14 94

Table 16: The number of spatio-temporal inliers and outliers are shown for the
case where the homography relating the shadow sequences was recovered by the
algorithm, and where the homography was known. The multi-scale jet descriptors
were used to determine putative matches.

and outliers) is lower in experiments where the homography is known. This can

be attributed to the process of determining putative matches discarding pairs of

space-time interest points whose spatial components do not satisfy the supplied

homography. In the case where the spatial model is unknown, no pairs of interest

points are discarded by the putative matching process.

Hence, if the spatial model is known prior to synchronization, it is advantageous

to use it in the special case of the algorithm to improve the percentage of inlying

putative matches that are passed to the RANSAC step used to recover the temporal

model.

5.7 Discussion

5.7.1 The importance of RANSAC ordering

In the process of estimating the spatial and temporal models in the general case of

the algorithm, the temporal model is proposed first, and the spatial model is then

recovered from the set of temporal inliers. In sequences containing a significant

number of outliers, this ordering is important. Since increasing the size of a sample

set causes the probability of the sample set containing an outlier to increase, it is

desirable to choose a smaller sample set. In this algorithm, this is achieved by firstly

fitting a temporal model which can be proposed from only two putative matches,

rather than a spatial model which requires at least four matches.

A further point of interest is how the inner model is affected when an outlier
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is contained in the sample used to propose the model in the outer instance of

RANSAC. It is expected that if a temporal model is proposed from a pair of putative

matches where at least one match is an outlier, there will not be many temporal

inliers. In fact, there may be insufficient temporal inliers from which to propose a

spatial model, in which case the temporal model is immediately discarded. If we

were to firstly attempt to recover the spatial model, there are a number of possible

temporal models that could be proposed from the spatially inlying points (as it is

assumed that all putative matches used to propose the spatial model are spatial

inliers). For example, if a homography was recovered first from a sample of four

putative matches, there are at least four spatial inliers from which at least
(
4
2

)
= 6

temporal models can be proposed. Hence, it is likely that an incorrect spatial

model would lead to many incorrect temporal models being proposed, which is

clearly inefficient.

It is noted that the accuracy of the estimated spatial model is heavily dependent

on the estimated temporal model at each RANSAC iteration. Whilst an inaccurate

temporal model may produce many temporal inliers, these temporal inliers are

unlikely to yield a consistent spatial model, hence the number of spatio-temporal

inliers is expected to be low. This is not a problem, as due to the nature of RANSAC,

it is expected that there are sufficient correct putative matches such that the correct

temporal and spatial models will be recovered in at least one iteration.

5.7.2 Comparison with existing algorithms

An algorithm by Yan and Pollefeys [53] that also uses space-time interest points

assumes a known frame rate ratio and recovers only the frame offset of two sequences

to integer accuracy. For each sequence, a histogram of the number of detected space-

time interest points in each frame of the sequence is constructed. Then, at each

integer frame offset, the cross-correlation score of these histograms is computed; at

the actual frame offset, the distribution of interest points in each sequence should

be similar, resulting in a high correlation score.

An example of using Yan and Pollefeys’ algorithm to synchronize the park10 pair

of sequences is given in Figure 36. It can be seen that even though the distributions
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points in Sequence 1
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points in Sequence 2

−400 −300 −200 −100 0 100 200 300
0

20

40

60

80

100

120

140

160

180

200

Frame offset ∆

Co
rr

el
at

io
n 

sc
or

e

(c) Correlation score over the range of possible
integer frame offsets

Figure 36: An example of recovering the frame offset of two sequences using Yan
and Pollefeys’ algorithm. In (a) and (b), the temporal distributions of the detected
space-time interest points are shown for the park10 sequences. The result of cross-
correlating these distributions is given in (c). The maximum correlation score occurs
at ∆ = 13 frames, which corresponds to the actual frame offset. It is noted that a
second local maximum is located close to this global maximum.

of interest points do not appear to have many unique and significant features, e.g.,

peaks and valleys, Yan and Pollefeys’ algorithm successfully recovers the frame

offset. It is noted that an incorrect frame offset near the actual frame offset also

has a high correlation score. This is a potential source of error and is addressed by

Yan and Pollefeys in their paper [53].

Although Yan and Pollefeys’ algorithm is shown to synchronize sequences based

only on the distribution of space-time interest points, their algorithm will fail in

the case where a similar motion generating the same number of space-time interest
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points is regularly repeated at different locations, e.g., a person walking and turning

regularly but in different directions and at different angles each time. Since the

distribution of space-time interest points will be periodic and because there is no

attempt to determine corresponding space-time interest points from each sequence,

this type of motion will appear to be identical to periodic motion to Yan and

Pollefeys’ algorithm. By fitting a spatial model to the putatively matched space-

time interest points, my algorithm is able to differentiate between this motion and

periodic motion.

A further case that may cause their algorithm to fail is where view-dependent

events occur, e.g., occlusions, where interest points will be generated at different

time instants of the two video sequences, or in one sequence only. This may sig-

nificantly affect the correlation score, and hence the recovered frame offset. My

algorithm is more robust in that such events are unlikely to be declared as putative

matches, and further, because these events are unlikely to occur at the same time

and place in both sequences, they will not satisfy the temporal and spatial models

and will hence be discarded.

A recent periodic motion detection algorithm by Laptev et al. [21] shares some

similarities with my algorithm. In Laptev’s algorithm, periodically equivalent fea-

tures are detected from a single video sequence. These points can be either space-

time interest points as described in this algorithm, or spatial feature points detected

in regions of a frame that contain non-constant motion in surrounding frames of the

video sequence. Laptev et al. assume that the periodic motion is performed at the

same rate throughout the sequence, hence only the period length is recovered. In

the context of synchronizing a pair of video sequences as my algorithm does, this is

equivalent to recovering only the frame offset of the two sequences and not the frame

rate ratio. Laptev et al. also recover a spatial model which is a reduced fundamental

matrix that can be recovered from only two pairs of periodically equivalent points.

The differences in the algorithms are that my algorithm operates by matching

space-time interest points between two sequences, rather than finding periodically

equivalent interest points from the same sequence. It can be seen in Figures 33(b)

and (d) that the sequences synchronized by my algorithm can have significantly
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different viewpoints which makes the process of finding matching interest points

more challenging. Also, my algorithm can recover a standard fundamental matrix

that encapsulates the epipolar geometry relating the two sequences rather than a

reduced matrix that only satisfies periodically equivalent points. Further, as Laptev

et al. search for periodic motion within one video sequence, it is assumed that the

motion occurs at the same rate within the sequence; my algorithm is able to recover

the ratio of the frame rates of two video sequences.

A possible case where my algorithm may fail includes sequences containing re-

peated or periodic motions which often generate many similar space-time interest

points in both sequences. Consequently, the number of outliers would be exces-

sive and incorrect temporal and spatial models may be returned by the RANSAC

process. This problem is common to all video synchronization algorithms.

5.8 Conclusion

It has been shown that this algorithm successfully synchronizes pairs of video

sequences by matching space-time interest points from each sequence and using

RANSAC to recover the synchronization parameters from these points. The gen-

eral case of the algorithm consists of an extension to well-known techniques used to

recover a homography or fundamental matrix relating a pair of still images from a

set of putatively matching interest points. This algorithm is unique as it operates

without requiring object tracking or knowledge of the epipolar geometry or the ho-

mography relating the cameras. However, in applications such as video surveillance

where the spatial model may be known, it has been shown to be advantageous to

use the spatial model to improve the quality of the putative matches.

The accuracy of the recovered frame offset and frame rate ratio are shown to

be comparable with manual synchronization. In each experiment, the recovered

homography or fundamental matrix relating the two sequences was confirmed to

be accurate via visual methods and in the case of the sequences containing planar

motion, numerical analysis. It was shown that using local jets for representing space-

time interest points is successful in most cases. However, although SIFT descriptors
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have been successfully used for many applications, they were not suitable for use in

this algorithm for synchronizing scenes containing non-planar motion.



Chapter 6

Conclusions and future work

This thesis has demonstrated that the synchronization problem can be approached

in a variety of manners; in an algebraic approach as described in Chapter 3, or

using geometric approaches as outlined in Chapters 4 and 5. My three algorithms

are shown to draw on some aspects of some existing algorithms, e.g., the measure

of synchronization used in Chapter 3. However, each of my algorithms introduces a

new approach to the synchronization problem such as the iterative approach given

in Chapter 4, or applies techniques from other domains to the synchronization

problem, as in the algorithm in Chapter 5 that extends a well-known technique

from the image domain and demonstrates its application to synchronizing video

sequences.

The results of using the three algorithms to synchronize a variety of real video se-

quences have demonstrated that the algorithms can accurately synchronize a range

of video sequences subject to the specified constraints of each algorithm. The re-

sults of synchronizing synthetic data sets in Chapters 3 and 4 demonstrate that

those algorithms are accurate and are not significantly affected by the presence of

noise.

The major contributions presented in this thesis are summarized below:

• It is demonstrated by the algorithms presented in Chapters 3 and 4 that only

a single object is required to be tracked in order to recover both the frame rate

ratio and frame offset of two video sequences. Further, the algorithm given in

Chapter 3 does not require the cameras’ epipolar geometry to be known. No

115
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other feature-based algorithm is known to use the motion of a single object to

recover both α and ∆ relating a pair of sequences recorded by cameras with

unknown epipolar geometry.

• The coarse-to-fine approach outlined in Chapter 3 involved a coarse synchro-

nization step that recovered a good approximation of the frame rate ratio from

only sub-sequence length information and the direction of vertical motion of

a single object in each frame. Thus, it is demonstrated that this minimal

information is sufficient to recover an estimate of the frame rate ratio of a

pair of sequences.

• In many algorithms used for synchronizing two video sequences, a number of

point correspondences from each sequence are detected and either the repro-

jection error of these points or the 9th singular value of a measurement matrix

constructed from the point locations is used as a measure of synchronization.

It was shown that an advantage of using the 9th singular value in place of the

reprojection error is that it is cheaper computationally. More importantly, it

provides greater consistency in the error measure since the reprojection error

relies on accurate estimation of the epipolar geometry; mis-synchronization

causes the epipoles to be mislocated, which directly affects the reprojection

error and hence the synchronization algorithm.

• Video sequences recorded by stationary cameras with fixed intrinsic param-

eters can be synchronized without first requiring weak camera calibration as

demonstrated by the algorithms presented in Chapters 3 and 5.

• It was shown that for sequences of a projectile moving with significant vertical

motion recorded by weakly calibrated cameras, a rapidly converging iterative

algorithm, as described in Chapter 4, can be applied to locate corresponding

frames from each video sequence by exploiting the known epipolar geometry

and the object’s motion.

• In Chapter 5, a standard method used to recover a homography or fundamen-

tal matrix from still images was extended to the space-time domain, allowing
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the synchronization parameters to also be recovered. In this manner, the syn-

chronization problem was recast in the framework of a well-known technique.

• It was shown that video sequences can be synchronized by finding matching

events represented by space-time interest points in video sequences, rather

than by matching object trajectories. Previous algorithms utilizing space-

time interest points either did not attempt to match interest points between

sequences [53] or did not apply the technique to the synchronization prob-

lem [21].

6.1 Suggestions for future work

All of the algorithms presented in this dissertation are applicable to synchronizing

pairs of video sequences. A logical step would be to extend the techniques presented

in this thesis to synchronize more than two video sequences. The trivial method of

doing this would be to synchronize the sequences pairwise, designating one sequence

as a reference sequence. Alternatively, it may be possible to synchronize all possible

pairs of video sequences, i.e., recovering
(

N
2

)
sets of synchronization parameters

for a set of N sequences. Then, methods of minimizing the errors in the set of

recovered synchronization parameters could be investigated. Another approach

could investigate whether it is possible to adapt these approaches to synchronize 3

sequences by employing 3-view geometric methods, e.g., using the trifocal tensor in

place of the fundamental matrix.

The algorithm given in Chapter 3 relies on dividing the video sequences into

sub-sequences based on the vertical motion of the tracked object in the scene. In

order to generalize the algorithm to handle video sequences that do not contain sig-

nificant vertical motions, it would be desirable to develop a more general method of

determining sub-sequences. It may be possible to use events such as those detected

by space-time interest points to define the first and last frames of sub-sequences.

A further extension could incorporate the ideas presented in this thesis into an

algorithm capable of synchronizing video sequences recorded by moving cameras

whose intrinsic parameters may change throughout the sequences. In order to
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achieve this, it may be necessary to determine a set of stationary features (i.e.,

lines and points) from which camera calibration could be performed for each frame

and the effects of camera motion minimized, before attempting to synchronize the

sequences.

With the expected increase in the quantity of recorded video sequences in the

future and the increase in computing power available to process this vast amount

of video data, it is envisaged that video sequence synchronization will play an

important role in the future of computer vision applications.



Bibliography
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